
Dataflow Optimized Overlays for FPGAs

Siddhartha

School of Computer Science and Engineering

A thesis submitted to the Nanyang Technological University

in partial fulfilment of the requirement for the degree of
Doctor of Philosophy

2019

Thesis Abstract

Dataflow Coprocessor Overlay (DaCO) is an FPGA-tuned dataflow-driven over-

lay architecture that offers fine-grained parallelism capable of delivering speedups

of up to 2.8× on sparse, irregular computations over competing architectures

(e.g. modern microprocessors and existing dataflow overlays). DaCO delivers these

improvements with a custom instruction datapath that exploits the raw parallelism

exposed by the dataflow triggering rule – instructions execute asynchronously as

soon as their operands are available. However, this simple triggering logic can

expose large amounts of irregular instruction-level parallelism that can be hard

to manage. This thesis addresses this challenge in three steps: (1) design of a

lightweight scheduling circuit inside each DaCO soft-processor that enables large-

scale out-of-order instruction execution at runtime, (2) design of a priority-aware

communication framework that delivers improved quality of service to critical com-

munication packets, and (3) compiler support that optimizes the dataflow graph

structure for improved runtime execution. DaCO is optimized for the Arria 10

AX115S (20nm SoC) FPGA board in order to take advantage of the hard on-chip

floating-point DSP blocks. Overall, when benchmarked with sparse-matrix vec-

tor multiply kernels, DaCO improves throughput performance by up to 2.4× over

existing in-order dataflow overlays, and delivers a peak operational throughput of

up to 38 MFLOPs/processor, or a peak total throughput of 3.5 GFLOPs/sec.

The DaCO engine is composed of a custom dataflow-inspired soft-processor and

a priority-aware Network on Chip (NoC) communication framework. Each soft-

processor has a custom datapath that operates directly on the dataflow graph

stored in local memory. We design a novel criticality-aware scheduling circuit

inside the soft-processor that allows large-scale out-of-order node execution with

minimal resource overheads. This is achieved by using a one-time memory re-

organization strategy together with a lightweight leading-ones detector circuit.

i

ii

The datapath is fully-pipelined and employs data-forwarding for achieving high-

performance, while the block RAMs (BRAMs) are multipumped to ensure effi-

cient resource utilization. On the target Arria 10 chip, we can fit up to 600 soft-

processors, where each DaCO soft-processor consumes 779 ALMs, four BRAMs,

and three DSP blocks, and operates at a 3.7ns clock.

The NoC communication framework is built with Hoplite-Q*, a novel FPGA-

friendly router that augments the existing Hoplite router to support priority-aware

routing features. Together, the DaCO soft-processor and Hoplite-Q* manage and

prioritize critical compute paths that were left unaddressed in prior work. On its

own, Hoplite-Q* can accelerate high-priority communication packets by up to 90%

when compared to the baseline Hoplite router. Each Hoplite-Q* router consumes

215 ALMs (64b packet with 32b payload) and can operate at a 3.3ns clock. DaCO

also supports a clustered topology, where soft-processors in the overlay can be

grouped and connected by a local crossbar, while out-of-cluster communication is

serviced by a Hoplite-Q* network. This strategy improves performance by up to

1.8–2× with only 15–40% resource overhead from the crossbar (cluster size of two

to four).

Finally, this thesis also explores the importance of criticality in dataflow workloads

and the importance of compilation support. We explore the limits of recursive un-

rolling and tree balancing on dataflow graphs and quantify the tradeoffs between

excess computation and reductions in the critical path with these techniques. We

then develop a Huffman-inspired reassociation scheme that optimizes the dataflow

graph based on a statically computed node/edge criticality. Together with fanin

and fanout decomposition, we quantify the effect of all these software transforma-

tions on the dataflow graph and demonstrate the performance tradeoffs when run

on hardware. These software transformations are packaged as compiler optimiza-

tions that provide an easy-to-use programming model for the DaCO engine.

In the future, our aim is to develop the DaCO ecosystem further to support various

flavors of dataflow-driven soft-processors. In particular, an asynchronous dynamic

dataflow graph processor would map well to iterative problems from domains such

as graph convolutional networks, molecular dynamics, and PageRank. In addition,

we hope to improve the DaCO programming model by extending the existing ISA

and supporting a codelet-based model, where the compute abstraction assumes a

more coarse-grained instruction-graph.

Acknowledgements

First and foremost, I would like to express sincere gratitude towards my PhD advi-

sor, Professor Nachiket Kapre, whose constant patience, guidance, and willingness

to invest time in my development made this whole journey possible. His attention

to detail and insistence on good research practices improved my technical and re-

search skills year on year, and I could not have asked for a better advisor for this

PhD endeavour.

I would also like to extend my sincerest thanks to the past and current members

of my thesis advisory committee: Professor Srikanthan Thambipillai (SCSE), Pro-

fessor Arindam Basu (EEE), and Professor Sylvain Barbot (EOS). Their input in

the committee meetings served as valuable markers that helped guide my research

progress to its final goal. I would also like to give a special thanks to Professor

Arvind Easwaran for handling the administrative duties in the absence of Profes-

sor Nachiket. He was always very kind and forthcoming in our interactions, and

only made my time at the university easier.

I would like to extend thanks to the many fellow students that I had the pleasure

of interacting and/or collaborating with in the HESL group. A special mention to

Abhishek Jain, whose undying enthusiasm for all things FPGAs is very contagious.

Lastly, a shoutout to Jeremiah, whose promptness and upbeat attitude only helped

ensure that students in the lab, including me, were given more than adequate

support on all matters.

Finally, none of this would have been possible without my family and friends. To

Mum, Dad, and Shruti, thank you for the unconditional love and undying support.

To all my friends, thank you for keeping me sane with encouragement and humour

in my difficult times. To my family and friends, I will forever cherish each and

every one of you.

iii

Contents

List of Acronyms vii

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Contributions . 2

1.2 FPGAs Today . 4

1.2.1 Arria 10 FPGA . 5

1.3 Why Dataflow? . 6

2 Background 8

2.1 What are directed acyclic graphs? 8

2.2 High-Level Synthesis . 10

2.3 FPGA Overlay Architectures . 10

2.4 Dataflow Computing . 12

2.4.1 Dataflow Computing: Early Years (pre 2000s) 13

2.4.2 Dataflow Computing Today (2000s – Present) 17

2.5 Arria 10 AX115S FPGA . 19

2.5.1 Resource Balance . 20

3 Dataflow Soft-Processor Design 21

3.1 Introduction . 21

3.2 Contributions . 22

3.3 Background . 24

3.3.1 The Good, The Bad, and The Ugly 24

3.3.2 Out-of-order execution . 25

3.3.3 OoO in FPGA-based soft-processors 27

3.4 Dataflow Coprocessor Overlay (DaCO) 28

3.4.1 Processing Element (PE) . 28

3.4.2 Crossbar design in the PSNoC 40

3.5 Methodology . 40

3.5.1 Experimental Setup . 40

iv

v

3.6 Results . 41

3.6.1 Resource Utilization . 42

3.6.2 Overall Performance . 43

3.6.3 Effect of criticality-aware scheduling 44

3.6.4 Scheduler Efficiency . 45

3.6.5 Effect of clustering . 48

3.6.6 Performance vs Resource Utilization 50

3.7 Future Work . 53

3.8 Conclusions . 53

3.9 Publications . 54

4 Network on Chip Design 55

4.1 Introduction . 55

4.2 Background . 57

4.2.1 Network on chip basics . 57

4.2.2 Existing NoC Routers for FPGAs 58

4.2.3 Hoplite NoC . 59

4.2.4 Hoplite Limitations . 61

4.2.5 Quality of Service (QoS) in existing routers 62

4.2.6 Contributions . 63

4.3 Priority-Aware Hoplite . 64

4.3.1 Priority-Aware Routing Function 65

4.3.2 Static Priority . 66

4.3.3 Dynamic Priority . 67

4.3.4 Buffering . 68

4.3.5 Hoplite-B variants . 70

4.3.6 Summary of Hoplite-Q* Adaptations 71

4.4 Methodology . 71

4.4.1 RTL Implementation and Simulation 72

4.4.2 Benchmarks . 73

4.5 Results . 75

4.5.1 Baseline Calibration Tests 75

4.5.2 Effect of Buffering (Hoplite-B) 78

4.5.3 Effect of Priority (Hoplite-Q*) 80

4.5.4 Priority-Tag Bitwidth . 82

4.5.5 Throughput vs average latency 85

4.5.6 Token Dataflow . 88

4.6 Future Work . 92

4.7 Conclusions . 93

4.8 Publications . 93

5 Software Optimizations 95

5.1 Introduction . 95

5.2 Background . 97

vi

5.2.1 Sparse Matrix Factorization 97

5.3 Recursive Substitution (Loop-Unrolling) 99

5.3.1 Motivating Example . 99

5.3.2 Recursive Substitution . 99

5.3.3 Reassociation . 101

5.4 Criticality-Aware Reassociation . 104

5.4.1 Motivating Example . 104

5.4.2 Huffman-based criticality-aware repacking 105

5.5 Fanout Decomposition . 107

5.5.1 Motivating Example . 107

5.5.2 Implementation . 107

5.6 Methodology . 108

5.6.1 Old Hardware Design . 108

5.6.2 Software Setup . 110

5.6.3 Experiments . 110

5.7 Results . 112

5.7.1 Notation . 112

5.7.2 Speedups over CPU . 112

5.7.3 Resource Scaling . 114

5.7.4 Empirical Error Analysis . 115

5.7.5 Floating-Point Efficiency . 116

5.7.6 Case for Homogeneous Design 117

5.7.7 Case for Selective Optimization 118

5.7.8 Related Work . 119

5.8 Future Work . 121

5.9 Conclusions . 122

5.10 Publications . 122

6 Conclusion 124

6.1 Final Contributions . 124

6.2 Lessons . 125

6.3 Future Work . 127

Bibliography 128

List of Acronyms

DaCO Dataflow Coprocessor Overlay

FPGA Field Programmable Gate Array

ALM Adaptive Logic Module (programmable logic element in Intel FPGAs)

DSP Digital Signal Processor

ASIC Application-Specific Integrated Circuit

NoC Network On Chip

PSNoC Packet-Sswitching Network On Chip

OoO Out Of Order

DFG Data Flow Graph

DAG Directed Acyclic Graph (used interchangeably with DFG in this thesis)

PE Processing Element

L Matrix Lower Triangular Matrix

U Matrix Upper Triangular Matrix

KLU Clark-Kent LU Solver

SPICE Simulation Program with Integrated Circuit Emphasis

HDL Hardware Description Language

HLS High-Level Synthesis

vii

List of Figures

2.1 Equation of a motivating example in C-style coding 9

2.2 Unrolled DAG of equation in Figure 2.1 9

3.1 DaCO topology: C clusters of N processing elements (PE) con-
nected by local crossbar arbiters; inter-cluster communication is
supported by the Hoplite-Q* NoC. 23

3.2 Average number of nodes ready / per processor at every cycle. Trace
obtained by evaluating benchmark bomhof2 on a 4x4 overlay in-
stance (cluster size = 1) . 25

3.3 Tomasulo out-of-order execution circuit for an architecture with two
functional units (FUs): Multi-Issue stage that commits decoded in-
structions in the instruction queue (IQ) into the reservation stations
(RS0 and RS1), Dispatch stage that assigns an instruction to an FU,
and Broadcast stage that transmits results on the common data bus
(CDB) back to the FUs, the register allocation table (RAT), and
the data registers. 26

3.4 Dataflow soft-processor design . 29

3.5 Breakdown and visualization of how dataflow graph data is packed
as node and edge state data in M20K BRAMs on the Arria 10 FPGA. 31

3.6 An example dataflow graph and how the packet consumer handles
incoming packets at runtime to update the relevant node states. . . 34

3.7 An example LOD-8 circuit in action, where the position of the first
1 (colored green) from the left in the input bit-vector is identified
correctly at 010. 38

3.8 Hierarchical (depth = 2) LOD scheduler design 39

3.9 Effect of replacing Baseline PE (in-order) with DaCO PE (out-of-
order). Cluster size fixed to 1. 44

3.10 Scheduling delay suffered by node vs node criticality (bomhof2) . . 46

3.11 DF Baseline vs DacO on bomhof2 benchmark : Average delay-
criticality product of subset of nodes with criticality greater than
(x-axis). 47

3.12 Throughput/PE with varying cluster size across different benchmarks. 48

3.13 Total throughput vs ALM utilization observed on three representa-
tive benchmarks with varying system sizes 51

3.14 Total throughput vs M20K utilization observed on three represen-
tative benchmarks with varying system sizes 52

viii

ix

4.1 DOR deflection routing illustrated in Hoplite. W and N packets
are both contesting for S output port, so W gets deflected to E
and has to traverse the entire west-to-east plane, while the packet
at PE is denied injection in this cycle. 60

4.2 Bufferless vs Buffered Routers (R), where PE at (1,1) is sending
a packet to (3,3). In the instance there is a conflict, the packet
is deflected to the next available port (East in this case) in the
bufferless network. In contrast, in a buffered network, the same
packet can be stored locally in that cycle, and then safely injected
in another cycle towards its destination. 61

4.3 Hoplite-Q* switch organization with enhancements. (1) Addition
of priority-bits accompanying each packet, (2) Addition of buffer
B to store deflected W and N packets. (3) Enhanced arbiter (not
shown) for selecting between W , N , PE, and B inputs, and (4)
Adders to update priority-bits of deflected packets (not shown). . . 63

4.4 Example packet format in Hoplite-Q network. Packets now have an
additional Ps-bit static priority-tag (in blue) 66

4.5 ALM and register cost of Hoplite-Q and Hoplite-Q* as bitwidth of
priority-tag, P , is increased. 67

4.6 Example packet format in Hoplite-Q* network. Packets now have
an additional (Ps +Pd)-bit static and dynamic priority-tags respec-
tively(in blue) . 68

4.7 Hoplite-B switch design and a variant Hoplite-B* design. Hoplite-
B* uses 3:1 multiplexers at the output E and S ports, while utilizing
an extra 2:1 multiplexer to multiplex between B and PE input ports. 69

4.8 Average packet latency and sustained throughput vs offered through-
put on 8×8 NoC with uniform random traffic 76

4.9 Sustained throughput (millions of packets per second) vs resource
utilization (ALMs) . 77

4.10 Sustained vs Offered Throughput for Hoplite and Hoplite-B under
various traffic patterns on an 8×8 NoC. 78

4.11 Packet delay distribution on 8×8 NoC for 4-application synthetic
workload across various Hoplite NoC designs at 50% injection rate. 80

4.12 Observed throughput improvements over 8×8 Hoplite NoC for the
application in the top-priority class, tested over varying number of
priority classes (C = 1→16), and total bitwidth of the priority-tag
(P = 1→16). 84

4.13 Average throughput of application in each priority class on 8×8
NoC, where C = 16 and P = 16. 85

4.14 Average latency suffered by packets in each priority class for 8×8
NoC, where C= 16 and P = 16. 86

4.15 Average throughput and packet-latency of application packets in
the top-priority class across different BSP benchmarks for an 8×8
NoC, where C = 16 and P = 8. 87

4.16 Average throughput and packet-latency for the top-priority appli-
cation packets vs overlay size. C = 16, and P = 16. 87

x

4.17 Average throughput improvement (percentage) vs Hoplite for bomhof3
with varying P. 89

4.18 Throughput performance of three representative dataflow graph
benchmarks under different NoC routers. 89

4.19 Observed average injection rate with four different overlay config-
urations. PE-Baseline is the baseline in-order dataflow PE, PE-
DaCO uses LOD-based out-of-order scheduling, and DaCO is PE-
DaCO with Hoplite-Q*. Priority-tag bitwidth is set to 8 when
Hoplite-Q* is used. The average injection rate is computed across
all cluster sizes (1, 2, 4, 8 and 16). 90

5.1 Toy 4x4 dense matrix example of a front-solve, where the matrix L
and vector ~b are known constants, and we are solving for the vector ~x 99

5.2 DAG for solving x1, x2, x3, and x4 in the toy 4x4 example 100

5.3 Substitution and näıve reassociation on x4 in the toy 4x4 matrix
example in Figure 5.1 . 102

5.4 Work Parallelism Tradeoffs vary with substitution depth for bomhof2
benchmark’s dataflow graph. Large depths increase work exces-
sively without reducing latency sufficiently. 103

5.5 Work-Parallelism Tradeoff in (bomhof2) after applying substitution
and reassociation . 103

5.6 Arrival time variation at arithmetic operator inputs for bomhof2

benchmark running on a 144-PE dataflow FPGA architecture. Lat-
est arriving input at cycle ≈ 180 (difficult to see in plot) 104

5.7 (1) Top-left: Compact DAG representation of a chain of add oper-
ations (top-left) representing a summation of five nodes. All nodes
are available at cycle = 0, except x1, which is delayed by 2 cycles.
(2) Bottom-left: Trivial reassociation of add chain into balanced bi-
nary tree that takes 5 cycles to evaluate (assuming add instruction
has a 1 cycle latency). (3) Right: Visualization of the 4-step pro-
cess to reassociate smartly with a Huffman-inspired method that
uses a sorted priority-queue to iteratively build the dataflow graph.
Dataflow graph can be evaluated in 3 cycles now. 105

5.8 Fanin/Fanout Distribution of the bomhof2 benchmark after substi-
tution transformation. 107

5.9 Fanout Decomposition Example (cpy is a copy node) 108

5.10 Heterogenous 2D overlay architecture used in this chapter. Note:
We decouple Add/Multiply/Division PE, due to high DSP resource
utilization to implement each arithmetic operator. 109

5.11 Overall speedup when different optimizations were applied succes-
sively on top of each other. Comparison is against a sequential
Intel Xeon 2407 CPU implementation and a 144 PE LX760 FPGA
implementation across various matrices. 113

5.12 Performance Scaling trends for bomhof2 benchmark. Work-Parallelism
tradeoffs are visible at crossover systems size of ≈10 PEs. 115

xi

5.13 Impact of parallelizing dataflow optimizations on the residuals of
~b− A~x of the factored matrix under different optimization groups . 115

5.14 GFLOPs utilization of different optimizations implemented on CPU
and various FPGAs. Error bars represent range of measured GFLOPs
across all benchmarks. 116

5.15 Performance recovery for small matrix benchmarks when using ho-
mogeneous designs with fused MAC units 118

5.16 Effect of Selective optimization on the bomhof2 benchmark PE scal-
ing trends . 119

List of Tables

2.1 Ratio of resources on Arria 10 AX115S 20

3.1 Properties of benchmarks evaluated in this study 41

3.2 Soft-processor resource utilization breakdown 42

3.3 Best-case benchmark runtimes with different types of PEs, com-
pared against a baseline CPU implementation 45

3.4 Resource utilization breakdown (ALMs) and clock performance (ns)
of the crossbar as cluster size is varied. 50

4.1 Existing NoC Routers for FPGAs 59

4.2 Routers Resource Utilization (ALMs), 8b priority tag where appli-
cable (56b–64b packet length, with 32b payload) 72

4.3 NoC Statistical Traffic Patterns . 73

4.4 Sparse matrix BSP benchmarks used in this study 74

5.1 Various optimizations applied to an expression for variable x4 in the
L~x = ~b Front-Solve computation (Figure 5.1) 99

5.2 Hardware Resource Utilization of the FPGA design 110

5.3 Benchmark Properties . 111

5.4 Related Work . 120

xii

Chapter 1

Introduction

Ever since the end of Dennard scaling [41] circa 2006, computer architects have

had to keep the power utilization wall [40, 35] in mind when designing next gen-

eration processors. Embarassingly parallel problems (e.g. graphics, dense matrix-

multiplications) were easy targets for vector processors (e.g. the ARM NEON

vector processor, Intel AVX instructions, Graphic Processing Units), while super-

scalar/VLIW (Very Long Instruction Word) [9] and multicore [100] architectures

were able to push the envelope further by exploiting limited forms of instruction-

level parallelism. Eventually, as process technology transistor trends continued

to scale over the years, it only got exponentially harder to keep large percent-

ages of chip area active due to power constraints – referred often to as the dark

silicon problem [43, 118, 117, 35]. Studies have shown that simply increasing

the number of cores on the chip does not allow us to maintain cadence with the

Moore’s Law [36, 117, 12, 63], and hence, new strategies and roadmaps to tackle

dark silicon have been proposed in recent years. There is a plethora of literature

on many different techniques (e.g. dynamic voltage and frequency scaling / near-

threshold voltage [53, 34], computational sprinting [99, 47]), which is beyond the

scope of this thesis. Instead, this thesis proposes a hardware specialization model

for delivering power-efficient acceleration that leverages on the customizability and

reconfigurability of Field Programmable Gate Arrays (FPGAs). The acceleration

model explored in this thesis aligns well to the coprocessor-dominated architecture

(CoDA) paradigm proposed in [117, 141], and the heterogeneous multi-core archi-

tectures proposed in the International Technology Roadmap for Semiconductors

(ITRS) report 2.0 [17].

1

2

This thesis introduces the DaCO (Dataflow Coprocessor Overlay) accelerator en-

gine that is tuned to deliver high-performance on FPGAs. DaCO is a token

dataflow overlay architecture that addresses compute bottlenecks found commonly

in sparse graph problems, where irregular compute and memory access patterns

limit achievable performance on modern commercial off-the-shelf platforms (e.g. desk-

top/server computers, graphics processing units). Some examples of such problems

include circuit simulation [49], computational fluid dynamics [39], molecular dy-

namics [108], sparse convolutional neural networks [77], and more. When evaluated

with benchmarks from some of these domains, DaCO demonstrates speedups of up

to 2.8× over existing competing architectures like modern microprocessors and ex-

isting token dataflow overlays. We achieve this speedup by exploiting fine-grained

irregular parallelism exposed by the dataflow graph and the dataflow triggering

rule – instructions encoded in the dataflow graph execute asynchronously as soon

as their operands are available. This event-driven model exposes raw parallelism

in the benchmarks, and this thesis addresses the challenge of managing this form

of instruction-level parallelism (ILP) effectively. There are three broad strategies

that help achieve this goal: (1) large-scale out-of-order criticality-aware schedul-

ing at runtime to prioritize computation along the critical path; (2) design of

a criticality/priority-aware router that tunes the performance of the communi-

cation framework to the dataflow graph abstraction; and (3) software compiler

optimizations that restructure dataflow graphs optimally to match the underlying

hardware. Each of these strategies is discussed in greater detail in Chapters 3 – 5.

1.1 Contributions

We design a high-performance overlay architecture tuned for the Arria 10 FPGAs

from the bottom up. The work described in this thesis takes inspiration from

the token dataflow architecture, and improves existing designs by revisiting three

major components: (1) the soft-processor, (2) the communication framework, and

(3) the software backend (compiler).

Dataflow Soft-Processor: The token dataflow processor is vastly different to

the traditional von Neumann microprocessor. Token dataflow processors operate

in an event-driven mode, where arriving tokens at the input trigger arithmetic in-

structions in the processor pipeline, which leads to the generation of new resultant

tokens at the output. This consumption and generation of tokens is dictated by a

3

dataflow graph, which represents the computation desired by the programmer. In

Section 1.3 below, we give our motivations for picking the dataflow graph abstrac-

tion as an acceleration model for this work. Chapter 2 gives a literature review of

existing dataflow-inspired processors, in particular the token dataflow processors.

Existing token dataflow processors evaluate on an input dataflow graph in an in-

order fashion, where tokens are processed in the same order that they arrive at the

input. We demonstrate how this limits performance, and in Chapter 3, we describe

the design of an out-of-order scheduler that overcomes this limitation. Our results

demonstrate speedups of up to 2.8× over existing token dataflow processors and

server-grade CPUs.

Communication Framework: The communication framework is an integral

part in any distributed computing model, especially in the Network on Chip over-

lay architecture proposed in this thesis. There is a wide variety of options and

design decisions that have to be made, which can dictate the behaviour, perfor-

mance and size of the routing framework – some prime examples include switch-

ing technique (circuit vs packet switching), network topology (ring, mesh, torus,

etc), arbitration strategy (dimension-ordered routing, wormhole routing, etc), and

more. Chapter 4 gives a brief background on these design decisions, and builds

motivation towards the design of a fast, FPGA-friendly priority-aware router that

is able to discern and prioritize network traffic based on packet prioritiy levels. We

call this design Hoplite-Q*, and we demonstrate its applicability to token dataflow

overlay architectures in Chapter 4.

Software Backend: The final contribution in this thesis focuses on the soft-

ware backend that maps an application to the token dataflow overlay. As with

any computing system, good software is essential to achieving maximum runtime

performance on the hardware, often exposed as optimization passes in compilers.

Chapter 5 delves into three possible optimization opportunities that restructure an

application dataflow graph to overcome various forms of limitations. This chap-

ter quantifies the performance of each optimization pass incrementally on SPICE

circuit simulation benchmarks, which serve as a case study for problems that are

plagued by long sequential chains of arithmetic operations that are notoriously

hard to parallelize. Overall, these software optimizations are capable of delivering

up to 1.9–4.6× improved speedup on SPICE (Simulation Program with Integrated

Circuit Emphasis) circuit benchmarks.

4

We call the complete ecosystem the Dataflow Coprocessor Overlay (DaCO) ac-

celeration engine, and tune its performance and resource utilization to the Arria

10 AX115S line of FPGAs. DaCO relies on a host processor to generate and opti-

mize dataflow graphs, which then get loaded and executed on the FPGA overlay

coprocessor. Overall, we can scale DaCO to 600 processors on the target FPGA,

operating at an Fmax of 250 MHz.

1.2 FPGAs Today

Since its inception in 1984, the Field-Programmable Gate Array (FPGA) has come

a long way, both in terms of capacity and architecture. With increasing capacity,

FPGAs have been able to acquire larger market share year on year, as abundant

logic/wiring resources enable increasingly larger designs to be synthesized to the

FPGA fabric. Other redeeming factors such as low development costs, shorter

time-to-market, field programmability, and more have allowed FPGAs to be com-

petitive not only to ASICs (Application-Specific Integrated Circuits), but also

to other programmable architectures like PLAs (programmable logic arrays) and

CPLDs (complex programmable logic device). Architecturally, FPGAs have also

changed radically since inception, adapting naturally to the demands of indus-

try and the research community. For example, the lookup table (LUT) design

has changed significantly, from simple three-input LUTs to the six-input LUTs

packed in configurable logic blocks today. Another example of the architectural

evolution of FPGAs is the addition of hard blocks like block RAMs (random-access

memories) and DSPs (digital signal processors) to the soft/programmable fabric.

These hard blocks have further enabled hardware architects to reduce the perfor-

mance gap between ASICs and FPGAs, and deliver power-efficient computation

with custom computing machines. For a more comprehensive description on the

history of FPGAs, [122] is an excellent retrospective on the evolution of FPGAs.

In the past two years, FPGAs have taken another significant leap forward. In-

tel’s acquisition of Altera in 2015 signaled a new era of FPGA-assisted computing.

Today, FPGAs have started to appear in datacenters. Microsoft’s Project Cata-

pult [97, 19] paved the way forward for FPGA-assisted power-efficient computation

on server-class workloads. Amazon’s F1 instance [5] has also improved the acces-

sibility of FPGAs to cloud computing developers, while programming frameworks

like Reconfigure.io [101] and Pynq [98] have helped address the programmability

5

barrier associated with using hardware-description languages (HDLs). High-Level

Synthesis (HLS) tools like VivadoHLS and LegUp [16] offer the power of static

analysis and static scheduling to generate hardware from popular languages like

C/C++, which has further improved the visibility of FPGAs as acceleration tools.

Most recently, there has been a cambrian explosion of FPGA-accelerated inference

accelerators for machine learning problems [126]. All of these developments point

towards a future where FPGA-based coprocessors are an attractive option to meet

the demands of next-generation computing. The work on DaCO proposed in this

thesis is inspired with such a future in mind.

1.2.1 Arria 10 FPGA

In 2018, Intel announced the first server-class central processing unit (CPU) with

an integrated FPGA: the Intel Xeon Gold 6138P [59]. The integrated FPGA on

this device is the Arria 10 AX115S. One of the attractive features of this FPGA

is the availability of the on-chip floating-point DSP blocks [123]. Implementing

floating-point arithmetic on FPGAs is challenging, often resulting in bloated de-

signs and long compute latencies when compared to fixed-point hardware. By

hardening the floating-point computation as a configurable DSP block, the Arria

10 offers an enticing platform to build custom scalable compute engines that sup-

port IEEE compliant floating-point arithmetic. Hence, developing for the Arria 10

AX115S FPGA presents a compelling case and is the target FPGA for the work

in this thesis.

Finally, the work in this thesis could also be synthesized to the Stratix 10 FPGAs,

which also come equipped with the floating-point DSP blocks. Similarly, if floating-

point computation is not required, DaCO can be synthesized to other families

of FPGA devices as well. For practical reasons, we limit our scope to creating

a resource-balanced DaCO architecture that is tuned for the target Arria 10

AX115S FPGA.

6

1.3 Why Dataflow?

A computer’s architecture determines how data and instructions are handled,

which directly influences where bottlenecks that slow performance down can be

found. Today, most modern computers are designed based on the von Neumann

model – control flow design with complex memory hierarchies (e.g. caches) and

data synchronization protocols. Dataflow concepts have, nevertheless, creeped into

several facets of modern computing, especially in compilers. To expose instruc-

tion level parallelism, compilers construct directed acyclic graphs (DAGs) from

procedural code, which then gets optimized (where possible) and serialized into a

list of instructions. On a von Neumann machine, these series of instructions are

then executed one at a time, dictated by a program counter. Modern out-of-order

scheduling circuits are also capable of extracting DAGs at runtime from limited-

sized windows, which delivers instructions per cycle (IPC) gains at the cost of

large hardware overheads. Instead of relying on dataflow principles yet operating

sequentially under a program counter, why not operate explicitly on the dataflow

graph itself?

In dataflow architectures, synchronization policies are greatly simplified as there

are no program counters, while execution of instructions can happen in parallel

asynchronously at each processor node, or processing element (PE). The dataflow

model implicitly exposes parallelism and allows masking of memory access latency

times with concurrent execution where possible. In modern microprocessor ar-

chitectures, this effect is achieved with considerable hardware resources and/or

software overheads.

Dataflow computers offers two key advantages when considered as accelerators:

1. Power-efficiency: The dataflow datapath is event-driven. Unlike the typ-

ical von Neumann processor pipeline, where the power-hungry instruction

fetch/decode stage is active every cycle, a dataflow processor only needs a

tracking circuit that wakes up when inputs are ready (i.e. an event). In the

dark silicon age, where constantly switching gates every cycle is not feasi-

ble any longer, the dataflow trigger abstraction is an attractive strategy for

7

scalability. Combined with the asynchronous evaluation, the dataflow pro-

cessor could theoretically achieve high ILP without complex, power-hungry

overheads.

2. Generality: Unlike highly-tuned application specific accelerators, the dataflow

graph abstraction offers generality to the programmer, as any computation

can be effectively represented as a dataflow graph. Our goal in this work has

been to provide a high-performance dataflow accelerator to which compute

heavy traces of an application can be offloaded easily at runtime. With ade-

quate compiler support, it would be possible to automate the identification,

configuration, and acceleration of dataflow graph regions in an input appli-

cation. This goal is similar to the programming frameworks like CUDA [91]

for Graphics Processing Units (GPUs).

3. Development Time : Creating high-performance designs for FPGAs can be

challenging, especially with RTL-based (register-transfer level) workflows us-

ing classic hardware-description languages like Verilog and VHDL. High-level

synthesis (HLS) tools like VivadoHLS and LegUp [16] have helped lower the

programmability barrier, but are still plagued by long synthesis and place

& route runtimes. Often, these HLS tools require some degree of hardware

expertise as well in order to create highly-tuned implementations. Addi-

tionally, as FPGAs continue to scale in capacity in the future, these designs

have to be recalibrated, fine-tuned, and recompiled for the newer technol-

ogy node. With overlay architectures, this responsibility falls solely on the

overlay hardware architects, while the general programmer can reap benefits

of fine-grained hardware acceleration with minimal development overheads.

We believe that the simple token dataflow abstraction, together with ade-

quate compiler support, offers a good programming model that minimizes

overall development time for larger performance gains.

In the next chapter, we give a deeper background on the dataflow principles and

challenges, and a brief overview of existing dataflow architectures.

Chapter 2

Background

This chapter gives a background to directed acyclic graphs (DAGs) and the basic

principles behind evaluating these DAGs explicitly on hardware, also known as

dataflow computing. We give a brief history and lessons learnt from the old and

new dataflow architectures conceived since the 1970s. Finally, we end this chapter

by giving a background on resources available on our target FPGA, and how we

intend to utilize them.

2.1 What are directed acyclic graphs?

A directed acyclic graph is a collection of nodes (also known as actors or ver-

tices) connected by edges (also known as arcs). In acyclic graphs, the edges can

only be unidirectional, and feedback loops are not permitted, i.e. information in

the dataflow graph only flows in one direction. Edges represent data dependen-

cies between nodes, whereas nodes could have different meanings depending on

the abstraction. For example, the simplest form of a DAG represents individual

instructions (arithmetic/control/load/store) as nodes.

Figure 2.1 gives an example of a computation over an array expressed as a C-style

for-loop, and Figure 2.2 shows one way in which we can construct the DAG of the

computation by only using arithmetic instructions as nodes (i.e. no control flow in

the DAG). Note that ax2 + bx + c is computed on an array x, and the equivalent

DAG representation is a completely-unrolled representation. By unrolling the

for-loop into a DAG, we obtain two benefits: (1) the overheads associated with

8

9

// for-loop that computes y = ax2 + bx + c
for (int i = 0; i < 3; i++) {
 y[i] = a*x[i]*x[i] + b*x[i] + c;
}

Figure 2.1: Equation of a motivating example in C-style coding

x0

Ѱ

x1

Ѱ

x2

ѰѰ a Ѱ Ѱ

b

Ѱ Ѱ Ѱ

+ + +c

+ + +

y0 y1 y2

Figure 2.2: Unrolled DAG of equation in Figure 2.1

iteration control is eliminated, resulting in a raw instruction-level representation

of the same computation; and (2) the DAG representation allows us to instantly

identify nodes (i.e. instructions) that are side-effect free and can be independently

evaluated in parallel (for example, the 6 multiplications at the top-level of the

DAG can all be evaluated in parallel if we have ≥6 functional units available).

Unfortunately, the DAG representation requires more instruction memory, which

can grow exponentially with more complex computations if we choose to do a full-

unroll everytime. Nevertheless, with careful compilation strategies and runtime

management, it is possible to take advantage of the fine-grained parallelism offered

10

by dataflow computing. This is especially beneficial for large iterative applications,

where we only unroll loops in bottlenecked regions of execution in order to deliver

overall performance gains.

2.2 High-Level Synthesis

High-Level Synthesis (HLS) is an actively growing field [86] that has significantly

improved hardware development time by relegating low-level hardware design deci-

sions to the compiler. Programmers can express their computation in a commonly

used language (typically C/C++, as seen in VivadoHLS and LegUp [16]), and with

the help of pragmas, can guide the compiler to generate a desirable hardware imple-

mentation. The HLS tools can essentially be viewed as static dataflow schedulers

that map and schedule blocks of computations (raw instructions or functions) onto

the FPGA fabric. For small applications, individual instructions can be mapped

to single logic elements (e.g. digital signal processors), whereas larger designs get

folded and time-multiplexed for shared execution. This statically-scheduled style

of dataflow is an attractive option, as it gives the programmer customizability

and control over the final outcome. However, HLS tools cannot avoid the long

runtimes associated with the hardware design flow (synthesis, and place & route).

Generating a bitstream takes orders of magnitude longer runtime than simple DAG

generation and optimization. Furthermore, the programmer has to be proficient

in hardware design strategies to a certain extent, which limits the reach of HLS

tools for mass adoption. Finally, as FPGAs scale, or design targets are changed,

the HLS approach requires a recalibration and recompilation that can once again

take up significant development and verification time.

Overlay architectures can address this limitation by trading away some of the

control and customizability offered by HLS tools. In the next section, we do a

brief overview of FPGA-based overlays that are well-known in literature.

2.3 FPGA Overlay Architectures

A popular way to virtualize FPGA resources is to design an overlay (also referred

to as an intermediate fabric [23]), which is a custom programmable architecture

11

built using the underlying FPGA fabric primitives. The reconfigurability of the

FPGA enables overlay designers to create customized high-performance overlay

architectures that target specific domains or workload types. Overlay designers

also provide simpler programming frameworks that allow users to program the

FPGA at almost software-like turnaround speeds, unlike traditional HDL or HLS

toolflows that are plagued by long place-and-route runtimes. There is, however, a

performance tradeoff, since compared to hard-processors (integrated circuits baked

into silicon using primitive gates/wires), soft-processors (built using “soft” logic

in the FPGA, i.e. lookup tables, flip-flops, digital signal processors, etc) in the

overlay are limited by the speed of the underlying FPGA fabric. For example,

hard processor circuits can often be clocked ≥1 GHz, whereas FPGA overlays

typically have an operating range in the hundreds of MHz. Nevertheless, factors

such as design cost and adaptability make overlays an attractive option to lever-

age FPGA features. For example, one proposed way to raise popularity of FPGAs

in data centers is by offering a suite of overlay architectures that lowers the pro-

grammability barrier associated with hardware design [124], while offering efficient

domain-specific acceleration.

Overlay architectures come in many flavors depending on their target domain.

Fine-grained overlays [80, 13, 71] create low-level primitives like lookup tables

(LUTs) and multiplexers to deliver flexible and portable virtual FPGAs (i.e. FPGA

on FPGA). These overlay architectures have been demonstrated to be useful in

providing just-in-time (JIT) compilation for FPGAs [80, 81] or augmenting soft-

processors with custom instructions that are portable across different FPGA de-

vices [71]. Fine-grained FPGA overlays are also useful for carrying out FPGA

architecture exploration.

Coarse-grained overlays [60, 124], on the other hand, are composed of more com-

plex primitives, often referred to as processing elements (PEs). PEs could be von

Neumann style soft-processors [20, 87, 137, 16], vector/single-instruction-multiple-

data (SIMD) processors [105, 22, 106], or a reconfigurable array of functional units

connected by a communication framework [44, 61, 69, 78] (also known as coarse-

grained reconfigurable arrays – CGRAs). The communication framework can also

be designed in various ways – e.g. crossbars [45], network on chips [45, 69, 95, 55,

67], or static/dynamic point-to-point connections [96, 51, 61].

There is a large body of work on FPGA-based overlays, as the increasing capac-

ity, coupled with the programmability barrier, make overlays an attractive option

12

to virtualize FPGA resources. Detailed reviews/surveys on FPGA-based over-

lay architectures can be found in [113], [60], and [124]. Our work described in

this thesis focuses on the token dataflow computing model, and can be viewed

as an extension to the coarse-grained FPGA-based dataflow accelerator proposed

in [69]. In the next section, we look at how we can design a statically-placed,

dynamically-scheduled overlay based on the principles of dataflow computing.

2.4 Dataflow Computing

Unlike von Neumann architectures, dataflow computers have no program coun-

ters. Instructions are executed only when the node in the dataflow graph has

received all its inputs/operands. There are no expensive synchronization policies

as the basic dataflow firing rule implicitly guarantees functional correctness, and

instructions (or nodes) can be executed in parallel asynchronously inside each

processing element (PE). Here, each PE is a processor with a custom dataflow-

inspired datapath that evaluates nodes and edges of the graph explicitly. On a

distributed architecture, data is communicated via a communication network be-

tween all available PEs. The data is sent as tokens, or packets, which are typically

composed of addressing and payload fields. This distributed dataflow computing

model is known as a token dataflow machine, which is the architectural inspiration

behind the work in this thesis.

For the DAG shown in Figure 2.2, the computation is kicked off by the constant-

nodes (green nodes in the figure) in the DAG. As the constants’ value is commu-

nicated to the nodes downstream as packets/tokens, the arithmetic instructions

“wake” up as soon as all their operands are available, and the PE can then issue

that instruction, packaged with its operands, to an arithmetic logic unit (ALU). If

multiple ALUs are available (e.g. in a superscalar or distributed model), then nodes

are evaluated asynchronously in parallel until the result-nodes (dark blue in the fig-

ure) are computed (i.e. no more outgoing edges from the evaluated node). Unlike

the power-hungry instruction fetch/decode stage in von Neumann architectures

that executes on every cycle, the dataflow paradigm uses a more power-efficient

instruction-tracking circuit that is purely event-driven. The dataflow computer is

also, in theory, more scalable, as there are no synchronization overheads associated

with out-of-order execution of instructions.

13

Despite these advantages, dataflow computers have had limited success as general-

purpose processors. The following sections give a brief overview/history of dataflow

computers, issues in dataflow computing, and the state of dataflow computers to-

day.

2.4.1 Dataflow Computing: Early Years (pre 2000s)

The very first dataflow designs were based on the static dataflow model. In the

static dataflow model, also sometimes known as the pure dataflow model, arith-

metic instructions are represented as nodes in a dataflow graph, sections of which

could be evaluated in parallel by multiple processors. One of the earliest static

dataflow architectures was the MIT Static Dataflow [32], proposed back in 1975.

The static dataflow model, unfortunately, is limited in its suitability to general-

purpose computing. In the static dataflow model, each edge can only have at

most one token during the evaluation of the DAG. Hence, when faced with iter-

ative loops (e.g. a for-loop), the static dataflow model does not permit parallel

interleaved evaluation across loop iterations, as only one iteration can be active

at any given time. This model is too restrictive for general-purpose computing,

but nevertheless, it can still be usefully applied to derive improved performance

on application traces.

The dynamic dataflow model was then proposed to counter this very limitation. In

the dynamic dataflow model, multiple iterations of the same dataflow graph could

be active in any given cycle. Some of the earliest dynamic dataflow machines were

the MIT tagged-token dataflow architecture [24] and the Manchester Dataflow

Computer [48]. Soon after, several improvements to the dynamic dataflow exe-

cution model were proposed, most notably the Explicit Token Store (ETS) [93],

which addressed some of the crippling issues faced by the early dynamic dataflow

machines. The ETS model inspired several dataflow projects, such as the Monsoon

Project [93] and the EM-4 Chip [103]. We give a brief overview of each project

below.

MIT Static Dataflow (1975) : The static dataflow model kicked off research

into dataflow computing principles. The static dataflow model required a fairly

simple architecture for execution: (1) memory cells held information about in-

structions (opcode and destination instruction addresses), (2) a control circuit that

monitored the memory cells to dispatch ready instructions, (3) a pipelined network

14

route to the arithmetic units that executed the instruction, and (4) a distribution

network that communicated and committed the results from the arithmetic unit

into the target address in the memory cells. Since all instructions were mapped out

statically, only one instance of each instruction could be active at a time i.e. only

way to express iterative loops was to statically unroll the entire computation and

map it to the memory cells. With computing technology still in its infancy back in

1975, the static dataflow model was viewed as very restrictive for general-purpose

computing.

MIT Tagged-Token / Manchester Dataflow Computer (1978) : The

tagged-token architectures were the first dynamic dataflow models put into prac-

tice. Unlike static dataflow, multiple data packets/tokens could be active on each

arc/edge in dynamic dataflow graphs. This enabled compact representation of

iterative code regions, and allowed the programmer to extract higher degrees of

parallelism from the application where available. Each packet/token, aside from

carrying a payload and destination address, also had a tag that identified the it-

eration number associated with the token. An instruction could only be sent to

the arithemtic units when two operands with the same destination address and

tag were found. If a match was not found, then the token had to be stored in a

buffer. The Manchester Dataflow Computer used an associative memory, which

enabled single-cycle tag-matching at runtime, but at a high logic utilization cost.

Eventually, this tag-matching problem was the main reason behind the limited

impact of the tagged-token dataflow model.

Issues with tagged-token dynamic dataflow architectures : There were

several challenges associated with the early dynamic dataflow architectures. They

were plagued by:

• An inefficient and expensive tag matching problem. In tagged-token dynamic

dataflow, the tokens are each given a tag that identifies the iteration number

of the token. In order to preserve functional correctness, operands have to be

matched by their tags before being issued as an instruction. This resulted in

the design of complex tag-matching circuitry that often relied on associative

memories or multi-cycle pseudo-associative strategies, both of which required

significant silicon real estate and dissipated a significant amount of power.

• Deadlock. In the event that an input token’s tag is not matched, the token

is then committed to a buffer where all unmatched tokens are stored. It

15

is easy to overcommit to this resource, which would result in a deadlock in

the system, where computation in the pipeline is unable to proceed further.

Some strategies to prevent deadlock involved designing very deep buffers (in-

efficient use of resources), or limiting the number of parallel iterations active

at a time (restricting parallelism offered by dynamic dataflow). Eventually,

both strategies failed to deliver competitive performance to make tagged-

token dynamic dataflow viable.

• The tag-matching problem further added latency to the processor pipeline,

which further restricted the performance impact of dynamic dataflow models.

Explicit Token Store : The Explicit Token Store (ETS) was a new model that

was proposed to address the tag-matching problem. In ETS, a program was com-

piled into a collection of activation frames (akin to the basic block formulation used

in modern compilers). Each activation frame has a fixed size and a detailed map

of memory allocation for all tokens associated with the frame. While constructing

activation frames was the job of a compiler, the allocation of activation frames

was carried out dynamically at runtime. This ensured that a simple memory con-

troller circuit in hardware could control the memory utilization at runtime, since

the size of the activation frame is known upfront. Inside each activation frame, the

instructions executed in dataflow order. Along with the payload, the tokens/pack-

ets carried a frame and instruction pointer field that indicated where the result

was written to in memory. Each memory location also had presence bits, which

act as the dataflow triggers for each instruction. Finally, unlike a stack, an acti-

vation frame could invoke multiple activation frames to become active at runtime,

thus exploiting the dataflow graph-styled parallelism, but at the granularity of a

code-block. A future direction of work for DaCO is to explore this codelet-based

model for new applications like convolutional neural networks (a code-block could

be a convolution, for example).

Monsoon (1990): The Monsoon architecture was a direct implementation of the

ETS model. Monsoon came about as a joint venture between MIT and Motorola,

with the goal of delivering a high-performance general-purpose dataflow computer.

Monsoon applied the ETS model in a distributed computing topology, where a col-

lection of processing elements evaluated hundreds of active activation frames in

parallel, and communicated with each other using a packet-switched network. The

dataflow principles, coupled with the ETS model, enabled fast context-switching

16

and operand matching, which in turn enabled each processing element to sup-

port a pipeline of tokens from different activation frames. Contrast that to the

von Neumann architectures, where context switching can be expensive and hurt

runtime performance. The largest implementation of Monsoon was a design with

8 processing elements with 8 I-structure processors (for managing the memory),

which communicated with each other using a two-stage packet-switch butterfly

network. Each PE ran at 10 MHz, and the overall system was capable of pro-

cessing up to 10 million tokens per second. Issues reported with Monsoon were

mostly in regards to idle cycles due to interleaving pipelines, and no prioritiza-

tion support for critical portions of the application [50]. Eventually, the Monsoon

processor, while initially promising, was unable to compete with the RISC/CISC

(Reduced/Complex Instruction-Set Computer) processors of the 90s.

EM-4 (1992) : The EM-4 multiprocessor was developed by the Electrochemical

laboratories in Japan. EM-4 introduced the concept of strong arcs – critical regions

of the dataflow graph were connected by strong arcs instead of normal arcs. This

allowed the processor at runtime to recognize a critical region for execution at

runtime, and use local registers to store and prioritize the evaluation of the strong

arc region. When a strong arc is detected, the processor pipeline is stalled until all

the instructions in the strong arc region have been processed. The EM-4 combined

the dataflow-styled processing for the overall graph with the control-flow styled

execution for the strongly-connected-arc regions. The dynamic dataflow model

adopted by EM-4 was similar to the ETS model described above, where each

activation frame was instead referred to as an operand segment. Our work in DaCO

has a slight similarity to the strong arc model in EM-4, as we provision for runtime

hardware that prioritizes critical paths in the dataflow graph. However, unlike

EM-4, our overheads are cheaper, and they do not stall the processor pipeline.

Threaded Abstract Machine (1993) : The threaded abstract machine (TAM)

was radically different to the dynamic dataflow techniques proposed in this era.

While most dynamic dataflow projects focused on the hardware aspects of ex-

ploiting dataflow principles, TAM focused on delegating the compiler with the

task of exploiting dataflow-driven performance. The compiler’s job is to create

code blocks and determine the exact size of the memory required by each code

block. The memory associated with each code block is referred to as its frame. A

code block is a collection of threads, which in turn are a stream of instructions.

17

The threads use the allocated memory in a frame in a statically determined man-

ner computed by the compiler. A continuation vector in the frame keeps track of

the active threads. A cheap counter-subtraction strategy is used to ensure syn-

chronization between threads, which can be likened to the dataflow trigger style

of event-driven wakeup/synchronization. Again, all of these memory allocations

are pre-computed by the TAM compiler. TAM demonstrates the power of good

compilers, and serves as an inspiration for the compiler work described in Chap-

ter 5.

Mini-conclusion on early dataflow : Most of the early research effort in

dataflow computing was focused on dynamic dataflow architectures to develop

general-purpose computing machines. Unfortunately, the difficulties in realizing

high-performance general-purpose computers limited their impact. The technol-

ogy node scaling of the 1990s also favored the von Neumann model significantly,

as single-core performance rode the wave of frequency (Dennard [31]) and density

(Moore [84]) scaling to mass adoption.

2.4.2 Dataflow Computing Today (2000s – Present)

As clock speeds began to plateau early in the 21st century, dataflow architectures

began to receive renewed interest in order to keep up with Moore’s Law, which

continued to scale. With dark silicon limiting active chip area, the event-driven

model of dataflow computing became an attractive alternative to the power-hungry

pipelines of conventional von Neumann processors. Dataflow also found its way

purely as a software abstraction in works such as [21, 102, 133, 33], as it exposed

high degrees of ILP in sparse workloads. This century, so far, has seen far fewer

implementations of pure dataflow computers, as most projects are opting to pur-

sue dataflow in the form of a domain-specific accelerator [69, 70]. The merits

of heterogeneous computing also motivates a coprocessor-dominated [116] future.

SEED [90] motivates the role of tightly-coupled dataflow accelerators alongside

traditional control-flow von Neumann processors, where application regions with

some control/data regularity offer a sweet-spot for dataflow to shine. Other sys-

tems like DySER [44], Softbrain [88] and Maxeler [131] Technologies focus on

spatial, streaming dataflow architectures for small, irregular traces that remain

static for long iterative applications. We give a brief overview of two key dataflow-

inspired recent works below.

18

WaveScalar [115] : WaveScalar brings the tagged-token dataflow paradigm into

the 21st century by focusing on the communication network design and adding a

customized cache (WaveCache) that manages computation at runtime. Computa-

tion in WaveScalar progresses in “waves”, where a wave is a portion of an acyclic

graph. The WaveScalar compiler breaks a computation down into these wave it-

erations, and a runtime system schedules and manages these wave computations.

Overall, by optimizing the communication framework and exploiting dataflow lo-

cality, WaveScalar demonstrated some potential as a general-purpose processor.

We focus on similar communication framework optimization goals with our work

on DaCO, where we create a hierarchical-cluster communication framework to take

advantage of the data locality property of real world benchmarks.

TRIPS [104] : TRIPS was developed at the University of Texas Austin, and is

based on the EDGE (Explicit Data Graph Execution) ISA (instruction-set archi-

tecture). The EDGE ISA [15] organizes computation as blocks of instructions,

where inside each block, the instructions execute in dataflow order. This coarse-

grained representation is known as “static placement, dynamic issue”, where both

the compiler and the hardware work together to deliver better performance. At

the block-level, the compiler constructs a dataflow graph of blocks to optimize

the overall schedulability of the application, whereas, at runtime, once issued, the

instructions inside each block progress in a parallel asynchronous fashion. TRIPS

takes this EDGE ISA concept and adapts it to create a TRIPS ISA. Blocks in

TRIPS have at most 128 instructions, and the compiler can schedule blocks to run

on a particular processing element. TRIPS/EDGE serves as an inspiration for the

next design iteration of DaCO, as we plan to extend the architecture to support

a codelet-based token dataflow model.

Very recently, the Qualcomm research prototype dataflow chips revealed at ISCA

2018 were shown to be competitive with their conventional processors. The dataflow

abstraction can be the foundation of an acceleration model for extracting high ILP

from non data-parallel regions that are commonly found in sparse workloads [89].

19

2.5 Arria 10 AX115S FPGA

In this section, we give a short summary of the resources available on the Arria 10

(20nm SoC) AX115S FPGA, and our design objectives in regards to each resource.

ALM (Adaptive Logic Module) : Basic reconfigurable building block com-

posed of two 6-input LUTs, four registers, and datapath control logic. The ALM

supports up to any 6-input boolean function, and certain 7-input functions. We

use the ALM to quantify the soft logic resource utilization of each design.

LAB (Logic Array Block) : A group of reconfigurable logic resources composed

of 10 ALMs and interconnect. There are broadly three types of interconnect

inside each LAB: (1) local routes from ALM-to-ALM inside the LAB, (2) adjacent

routes from neighbouring LABs, and (3) global routes from other LABs on-chip

via row/column interconnect. The Quartus compiler is responsible for packing

logic optimally into LABs. The LAB can also be configured into a memory mode

known as MLAB (memory LAB, described below).

MLAB (Memory LAB) : The AX115S has 20,774 out of 42,720 (≈49%) LABs

which can be configured as MLABs. Each MLAB has a maximum capacity of

640b (64b per ALM × 10 ALMs per LAB), which can be configured as a 64x10b

or 32x20b simple dual-port SRAM (static random access memory). The MLAB

is a useful mode for creating pockets of small distributed memory in the soft

processor logic, which can deliver savings to both on-chip hard memory block

(M20K) utilization and read/write latency. On the AX115S, the total MLAB

available capacity is 12,984 Kb.

M20K Block RAM (BRAM) : The AX115S only has one type of hard on-chip

memory block: the M20K. Each M20K has a capacity of 20Kb, and with a total of

2713 M20K blocks, the total on-chip capacity of the FPGA from M20K BRAMs

is ≈53Mb. Our goal is to maximize the resource efficiency of the M20K BRAMs,

such that the largest possible graphs can fit completely on-chip. By eliminat-

ing/reducing off-chip data movement, we can achieve significant performance/watt

improvements. Each M20K can be configured in simple/true dual-port mode, and

can operate at a peak frequency of 645 MHz. For timing targets in the 250–300

MHz region, it is feasible to multipump (double-clock) the M20K blocks to create

additional virtual read/write ports.

20

DSP (digital signal processor) block : The DSP block is the workhorse of the

FPGA. It supports several different operating modes (e.g. fixed-point multiply-

accmmulate, floating-point multiply, etc), which have to be statically configured

at compile-time. While the fixed-point modes allow dynamic operations (e.g. dy-

namic subtract/negate), the floating-point mode does not support any dynamic

control. Hence, we have to design our ISA carefully to ensure that we can execute

all supported instructions in the dataflow graph. The floating-point DSP blocks

can also be configured at compile time to have varying number of pipeline stages

(supported: 1–4). This is a latency-Fmax tradeoff, which can be tailored to the

design requirements. In our case, a 250–300 MHz goal allows us to operate the

DSP blocks at a pipeline depth of just 1 (i.e. latency of instruction = 1). Our goal

is to achieve the highest possible throughput with DaCO, and hence, to maximize

the resource efficiency of the DSP blocks as much as possible.

2.5.1 Resource Balance

Table 2.1: Ratio of resources on Arria 10 AX115S

ALMs Regs M20Ks DSPs
ALMs 1:1 1:4 157:1 281:1
Regs 4:1 1:1 630:1 1126:1
M20Ks 1:157 1:630 1:1 2:1
DSPs 1:281 1:1126 1:2 1:1

Total 427,200 1,708,800 2713 1518

Table 2.1 shows the available resources and their ratios to one another. The ratio

between ALMs to M20Ks (157:1) and DSPs (281:1) is particularly challenging

to design for, as that is a small budget for designing a fully-featured dataflow

soft-processor. In order to balance the overall resource utilization, we allocate

multiple M20K and DSP blocks to each processor. We also focus on maximizing

the resource efficiency of M20K blocks – ideally, M20K blocks should only be used

to store the dataflow graph in order to maximize the largest application sizes that

can fit inside the on-chip memory.

Chapter 3

Dataflow Soft-Processor Design

3.1 Introduction

FPGAs have assumed an important role in modern computing systems through

deployments in cloud environments like Microsoft Azure [19], and Amazon F1 [5].

New products like the Intel Xeon-FPGA 6138P hybrid SoC [58], and the Xilinx

Everest [136] platforms further bolster their growing relevance. FPGAs are now

firmly in the mainstream and have successfully demonstrated the long promised

benefits of performance and energy efficiency of reconfigurable hardware.

To make FPGAs easy to program, vendors are investing in high-level synthesis

(HLS) methodologies through programming languages like C/C++, OpenCL, as

well as embedded design ecosystems like Xilinx PYNQ [98]. Intel’s latest Xeon

6138P SoC with an integrated Arria 10 FPGA make it possible for software de-

velopers to easily offload critical portions of their software code to the FPGA

attached as a tightly-coupled coprocessor. Another way to leverage this capacity

is through soft-processor + network on chip (NoC) overlays such as the 1680-core

GRVI-Phalanx system[45]. Thousands of small, customized soft-processors can

deliver improved application-specific performance and energy efficiency, while re-

ducing the parallel programming challenge and software development effort at the

same time. The NoC interconnect backbone simplifies data movement and offers

scalability and flexibility of integration.

Our goal is to demonstrate a FPGA-based design of a Dataflow Coprocessor Over-

lay (DaCO) that maximizes the resource efficiency (ALMs, M20Ks, DSPs) on an

21

22

Arria 10 FPGA to deliver a many-core dataflow acceleration engine. Figure 3.1

shows an example N-cluster DaCO engine. DaCO is a collection of customized

dataflow soft-processors that communicate with each other over a hierarchical

packet-switching network on chip (PSNoC) communication framework. Packets

addressed to another processor in the same local cluster are routed by the lo-

cal crossbar arbiter, whereas packets addressed to an out-of-cluster processor are

routed over the Hoplite-Q* NoC [111]. While the local crossbar arbiter employs

a round-robin arbitration strategy to route local packets in a single-cycle (best-

case), the Hoplite-Q* NoC adopts a 2D unidirectional torus toplogy that is prone

to longer packet communication latencies. This chapter focuses on the design of

two of the three main components of DaCO :

1. Design of the dataflow PE in DaCO, and how out-of-order scheduling can

be added to the soft-processor with minimal overheads.

2. Design of the crossbar that supports local communication in a cluster, and

its impact on resource utilization and performance.

The design of the third component – the Hoplite-Q* NoC – is the focus of Chap-

ter 4. All experiments in this chapter, unless otherwise stated, use the baseline

Hoplite [64] NoC in order to isolate the effects of the improved PE design and/or

clustered topology more clearly. A background on the Hoplite deflection router

can be found in Chapter 4, Section 4.2.3.

3.2 Contributions

We propose several techniques to address the challenges of implementing dataflow

soft-processors on FPGAs. Our contributions are:

• We devise a hardware-friendly criticality-aware OoO (out-of-order) scheduling

technique that uses a bit-vector to capture node readiness which is then sup-

ported by a hierarchical lookup approach. This technique avoids squandering

precious on-chip Block RAMs (BRAMs) on active-ready queues used by con-

temporary dataflow systems and instead frees them up to accommodate larger

dataflow graphs. We use a static criticality-aware memory organization to pick

the most important node for execution at runtime. Our hardware is able to

23

PE1

PEN

PE1

PEN

HOPLITE-Q*
NETWORK

N
PE

s /
 C

lus
te

r

PSNoC
C

Cl
us

te
rs

Crossbar

Figure 3.1: DaCO topology: C clusters of N processing elements (PE) con-
nected by local crossbar arbiters; inter-cluster communication is supported by

the Hoplite-Q* NoC.

select from 1000s of active nodes to determine the most critical ready node to

process at runtime.

• We reduce the overheads of deflection routing in the FPGA-friendly communi-

cation networks by using a local crossbar interconnect to exploit data locality

and route dependencies within the cluster much more efficiently. We adapt

the PSNoC to support configurable clustering to determine the right balance of

resource cost and dataflow execution time.

• We pay close attention to the ALM, M20K, DSP balance on the Arria 10 FPGA

24

to determine how to best provision resources in our DaCO array to boost com-

pute density and memory efficiency. Alternatively, the DaCO overlay can be

configured to support various combinations of resource balances desired to sup-

port other device mixes as well, which is beyond the scope of this chapter.

3.3 Background

3.3.1 The Good, The Bad, and The Ugly

The Good: Unlike conventional soft-processors, dataflow processors have no pro-

gram counter. Instead, the token dataflow processor operates directly on a directed

acyclic graph (DAG) using a simple dataflow firing rule: execute an instruction

only when all its operands are available. This encourages the programmer or HLS

compilers to expose concurrency directly in the form of dataflow graphs. In our

abstraction, the nodes in a DAG encode an instruction, while the edges represent

any data dependencies between these instructions. The edges can be viewed as

communication send and receive instructions over the PSNoC. A DAG is parti-

tioned and stored across multiple dataflow processors, and instructions execute in

parallel at each dataflow processor independently. This dataflow-style parallelism

is captured in the DAG representations, and is a very useful feature when par-

allelizing sparse workloads characterized by irregular instruction level parallelism

and irregular memory access patterns (e.g. indirect pointer addressing).

The Bad: Dataflow implementations, however, introduce an out-of-order schedul-

ing challenge at runtime. Fortunately, unlike out-of-order scheduling in existing

CPUs, we have to tackle a simpler problem since the concurrency between instruc-

tions is already known upfront and does not need to be rediscovered. However,

this still means that at runtime, at any given cycle, multiple unpredictable subset

of nodes can be ready for evaluation. Figure 3.2 shows an example trace of a

benchmark (bomhof2) on a 4x4 overlay instance – an average of up to 800 nodes

can be ready per processor, which not only stresses the resource budget to maintain

an active-ready queue, but could also inhibit overall performance if critical nodes

are not prioritized for evaluation. The active-ready queue in existing dataflow

soft-processors typically gets synthesized into long FIFOs (first-in first-out) using

on-chip BRAMs, which is an inefficient use of the scarce hard block resource. Uti-

lizing BRAMs for active-ready queues also limits the size of the dataflow graph

25

that can fit in the on-chip memory, further limiting scalability and performance

of the overlay.

0

200

400

600

800

0 10 20 30 40

Cycle (Thousands)

A
vg

 #
 o

f N
od

es
R

ea
dy

 /
P

E

Figure 3.2: Average number of nodes ready / per processor at every cycle.
Trace obtained by evaluating benchmark bomhof2 on a 4x4 overlay instance

(cluster size = 1)

The Ugly: The tail-end of the execution trace in Figure 3.2 shows a distinct

lack of parallelism. An active-ready queue implementation of this structure will

only store a few elements, and be massively underutilized. Furthermore, any data

communication over a deflection-routed NoC like Hoplite-Q* will only exacerbate

the packet routing latencies of latency-sensitive dataflow parallel evaluations in

this critical, mostly sequential phase of the problem and prolong execution time.

3.3.2 Out-of-order execution

Modern microprocessors are typically based on the von Neumann computer ar-

chitecture [125], which fundamentally, is an in-order serialized processing engine

that executes instructions one at a time under a program counter. While the

architecture is simple and elegant, the main reasons behind its popularity are

steadfast improvements in semiconductor technology, strong market forces, and a

stable software ecosystem that has promoted continuous research and development

for the past four decades. When hierarchical memory organization (e.g. caches)

were introduced to the von Neumann model in the 1990s, the popularity of OoO

execution increased signficantly, as it enabled the processors to tolerate variable

memory latencies across the different memory hierarchies. Today, as we approach

26

the physical limits of photolithography for semiconductor fabrication, OoO execu-

tion remains important to extract dynamic instruction-level parallelism for better

overall performance.

OoO in von Neumann microprocessors was introduced with a centralized schedul-

ing technique known as scoreboarding [120]. In scoreboarding, each issued in-

struction’s data dependencies are tracked in a “scoreboard”, which is a centralized

data structure that maintains various status flags to identify and prevent runtime

data hazards [49] (e.g. read-after-write, write-after-write, write-after-read). In-

structions are issued from an instruction queue (IQ) as soon as it is hazard-free

and an appropriate functional unit (FU) is available. Scoreboarding, however, is

a centralized scheduling model that is susceptible to frequent stalls, as a single

overcommitted FU can stall an instruction deeper in the queue that might have

been free to execute on a different FU (e.g. a floating-point instruction on an

floating-point unit).

IQ

FU1FU0

RS0 RS1

RAT

REGS

Figure 3.3: Tomasulo out-of-order execution circuit for an architecture with
two functional units (FUs): Multi-Issue stage that commits decoded instruc-
tions in the instruction queue (IQ) into the reservation stations (RS0 and RS1),
Dispatch stage that assigns an instruction to an FU, and Broadcast stage that
transmits results on the common data bus (CDB) back to the FUs, the register

allocation table (RAT), and the data registers.

27

The Tomasulo algorithm [121] addressed this issue by introducing a decentralized

scheduling model that can capture out-of-order execution regions across multiple

FUs effectively. Figure 3.3 shows a high-level picture of the hardware organization

to implement dynamic out-of-order scheduling that is the basis even for modern

micprocessors today. Unfortunately, this OoO circuit does not scale well with

increasing number of FUs for the following two reasons:

1. The wiring density of the broadcast bus (also known as the common data

bus) increases significantly as it must fan out to all FUs in the design.

2. The broadcast bus can only ever be used to transmit data by a single FU in

each cycle, which gives diminishing returns as number of FUs is increased.

Modern microprocessors have typically hundreds (generally <500) of in-flight in-

structions executing in an out-of-order fashion (also known as restricted dataflow

execution order), at the expense of area-expensive OoO execution hardware that

has high dynamic power consumption.

Essentially, these techniques attempt to reconstruct small dataflow graph regions

at runtime to expose instruction-level parallelism in the application despite the

sequential ordering of instructions in von Neumann machines. Unfortunately, this

comes at a signficant hardware overhead, as these designs require expensive cir-

cuitry in the form of reservation stations, allocation tables, reorder buffers, and

complex data buses. Naturally, they are difficult to map efficiently on FPGAs due

to significant logic and wiring requirements, and in the next section, we look at

some of the existing related work on introducing OoO execution to FPGA-based

soft-processors.

3.3.3 OoO in FPGA-based soft-processors

Most existing FPGA soft-processors are simple in-order processors (e.g. MicroB-

laze [137], NIOS [87]), including existing token dataflow soft-processors [69]. Im-

plementing out-of-order scheduling for FPGA-based soft-processors can be chal-

lenging due to the underlying FPGA substrate limitations (e.g. limited number of

read/write ports on BRAMs). Well-known out-of-order scheduling techniques like

scoreboarding [120] and Tomasulo algorithm [121] do not scale well on FPGAs,

28

often resulting in bloated and slow designs (>1k LUTs and <200 MHz operating

frequency for 32-entry OoO scheduler [1]). Recent work [132] in this domain took

on the challenge of designing FPGA-friendly out-of-order schedulers for traditional

von Neumann soft-processors, which has improved the operating frequency signif-

icantly, and can now match that of state-of-the-art FPGA-based soft-processors

like the NIOS II/f soft-processor (240 MHz). However, the resource utilization

efficiency remains poor. The EDGE ISA processor [46] supports OoO within a

fixed 32-size instruction window. Our work surpasses these previous attempts by

supporting massive OoO (1000s of instructions) with a hierarchical scheme, which

relies on static compiler-style optimizations that reduce the complexity of the OoO

circuitry significantly.

3.4 Dataflow Coprocessor Overlay (DaCO)

In this section, we go into detail on the architectural implementation of DaCO. In

particular, we focus on the design of the dataflow PE, and our efforts on adding

out-of-order scheduling features to it. We also touch on clustering, and the design

of the crossbar that supports communication between all PEs inside a cluster.

3.4.1 Processing Element (PE)

Each PE is a custom dataflow soft-processor built with five components:

1. On-chip node/edge memory,

2. Arithmetic logic unit (ALU),

3. Packet consumer,

4. Packet generator, and

5. A scheduler for managing computation at runtime.

Figure 3.4 shows these five modules and their layout within the processor design.

Each PE communicates by sending/receiving packets to/from the PSNoC com-

munication framework. The processor is fully-pipelined, which guarantees that a

29

new packet can be injected into the processor every cycle, i.e. a processor cannot

backpressure the communication network. This guarantees a deadlock-free PSNoC

architecture, as a packet is always allowed to exit into a PE, and ensure progres-

sion in the network. The scheduler is a key contribution in this chapter, where we

improve upon the existing in-order scheduler to support large-scale out-of-order

scheduling at runtime.

NoC
Port
Entry

Packet
Consumer

Scheduler

ALU

Packet
Generator

M20K
[Edge]

M20K
[Edge]

NoC
Port
Exit

M20K
[Node]

M20K
[Node]

Figure 3.4: Dataflow soft-processor design

3.4.1.1 Node and Edge Memory

We fracture the dataflow graph memory into two distinct node and edge memory

structures. This decision is motivated by the differing memory access patterns

to node and edge state in the processor. Node state is read from and written to

throughout the datapath, whereas edge state is read only by the packet generator

module. We use M20K BRAMs for storing both the node and edge state inside

each processing element. From our synthesis experiments, we settled on a design

where each processor is allocated four M20K BRAMs, as it gives us a balanced

resource utilization ratio (see Table 2.1). We allocate two BRAMs each to store

node and edge state respectively. Due to the decoupled node/edge memory design,

there is a small memory overhead to store pointer information that connects the

two memory structures, which forms a coherent graph description locally inside

each processor. Figure 3.5 shows how the node and edge state is packed into each

addressable slice in a M20K BRAM. As a consequence, each M20K BRAM can

pack 512 × 40b node slices or 1024 × 20b edge slices. There is an ≈14% overhead

30

to store node-to-edge pointers, which is absorbed into the edge memory module.

Overall, each processing element can pack 1,024 nodes and 1,536 edges. This

balance is motivated by the observation that dataflow graphs in our benchmark

set typically have more edges (≈ 1.2–1.3×) than nodes.

Multipumping: Multipumping [73] is a well-known overclocking technique that

can be used to create virtual read and write ports on the on-chip M20K BRAMs on

the FPGA. We configure the node memory BRAM to operate in the single dual-

port mode (1×read port + 1×write port) and multipump it to create a total of

2×read/write ports. This gives the advantage of having dedicated read/write ports

for each stage in the processor pipeline, thereby simplifying the processor design

logic and eradicating any non-determinism in the memory operations (e.g. due

to the time-multiplexed sharing of the read/write ports). Multipumping incurs a

small control logic overhead (≈30 ALMs) and easily achieves the target 250MHz

system clock, since the hard M20K blocks can be clocked up to 645MHz.

3.4.1.2 Arithmetic Logic Unit (ALU)

The ALU is the main workhorse of the processor and is responsible for executing

the arithmetic instructions encoded in the dataflow graph. The hardened floating-

point DSP (FPDSP) block is an attractive feature of the Arria 10 FPGA that

enables high-performance IEEE-compliant single-precision floating-point compu-

tation without the need for instantiating high-latency, resource-heavy floating-

point IP cores. The Arria 10 DSP blocks can be statically configured into several

floating-point instruction modes, such as multiply, add, or multiply-accummulate.

We provision three FPDSP blocks per ALU inside each processor and configure

them statically at compile time to support the ISA (instruction set architecture)

required for all benchmark types. In the future, if the abstraction of the DAG

is changed (e.g. nodes in the DAG correspond to composite instructions instead),

the ALU can be re-designed and re-synthesized to offer a new flavor of DaCO

that supports a different ISA. We could also explore heterogeneity in the ALU

design like in [110] (i.e. different PEs support different sets of instructions for area

savings).

The number of pipeline stages inside the FPDSP can also be statically configured

during synthesis to 1–4 stages, which affects the achievable clock frequency. We

configure the FPDSP blocks to single-cycle mode, as their operating frequency

31

40b

Payload Trigger + Opcode Flag

32 7 1

(a) Breakdown of how a node state is stored in a 40b addressable slice in a BRAM. The
1b flag indicates if the node has any outgoing edges.

8 10 1

20b

Addressing Target Node-ID Flag

1

Edge-ID

(b) Breakdown of how an edge state is stored in a 20b addressable slice in a BRAM.
The 1b flag indicates if the current edge slice is the final outgoing edge of the active

node being processed.

.

.

.

40b

51
2

no
de

 s
lic

es

e.g. node 2 slice

.

.

.

10
24

 e
dg

e
sl

ic
es

e.g. edge 0 slice

Node Memory Edge Memory

20b

(c) Visualization of how node and edge states are packed as addressable slices inside a
single M20K BRAM in each PE. Note the different number of addressable slices in each

data structure.

Figure 3.5: Breakdown and visualization of how dataflow graph data is packed
as node and edge state data in M20K BRAMs on the Arria 10 FPGA.

still meets our clock targets, while simultaneously, reducing the processor pipeline

depth to save logic utilization (discussed in the next section).

32

3.4.1.3 Packet Consumer

The dataflow processor is starkly different to a conventional microprocessor as

there is no program counter or instruction memory to direct the flow of the com-

putation. All instructions, encoded as nodes, are self-managing and they activate

instructions downstream after being evaluated. These simple dataflow triggering

principles are the key properties that expose implicit parallelism and scalabil-

ity opportunities for many-core architectures without complex synchronization or

shared-memory overheads. The packet consumer implements these dataflow trig-

gering principles by managing the dataflow triggers of all locally-stored nodes in

the node memory. This involves fulfilling 4 key tasks:

1. Storing the payload of arriving packets at each processor into the local graph

memory,

2. Sending instructions, with payload, to the ALU when all operands of a local

node have been received (i.e. node is ready to be evaluated),

3. Storing the result from the ALU back into the node memory, and

4. Notifying the next pipeline stage that a node is ready for edge evaluation to

create new downstream communication packets.

When a packet arrives at the inputs of the dataflow processor, the packet con-

sumer issues a read to the local node memory for the node slice addressed by the

incoming packet (see Figure 3.5c). The node slice contains a trigger bit-vector (see

Figure 3.5a), which is a small state machine that keeps track of the status of the

node – e.g. given a 2b trigger,

• 00: node has received no operands,

• 01: node has received 1 operand,

• 10: node has received both operands, and

• 11: node has been completely evaluated and its result is stored in the node slice.

Based on the trigger value, the incoming payload is either stored in the local

memory or bypassed directly to the ALU packaged as an instruction. Any valid

computed output from the ALU is written back to memory and the active node’s

trigger value is updated. Overall, throughout the processor datapath, the packet

consumer module tracks and updates the dataflow trigger of all nodes in the local

33

node memory. This can be likened to the scoreboarding [120] technique used in

von Neumann CPUs, except in this case, the scoreboard is a distributed data

structure that is managed by the packet consumer to handle data dependencies of

all nodes local to the dataflow processor.

We design a 3-stage pipeline to implement the described packet consumer be-

haviour. Figure 3.6 shows a contrived example that highlights how this pipeline

behaves at runtime. In this example, we focus on a single PE that manages the

state of just a single ADD node, as shown in the dataflow graph in Figure 3.6a.

The inputs in this case are nodes with values 2 and 3. These inputs are sent

from another source (e.g. host CPU, or another PE) through the communication

network, and arrive at different cycles, as depicted in the waveform diagram in

Figure 3.6b. As soon as the final operand (i.e. 2) of the ADD node is received in

cycle 6, the stored operand (i.e. 3) is fetched from the node memory, and together,

both operands are issued as an ADD instruction to the ALU. Once the result is com-

puted, it is written back into the node slice allocated to this ADD node (address

0x0). The dataflow trigger is updated throughout this operation, which is shown

in the snapshots of node memory in Figure 3.6c.

The packet consumer datapath is fully-pipelined in order to support an initiation

interval (II) of 1. This is achieved by designing a robust data-forwarding circuit

that prevents read-after-write data hazards. When both operands targeting the

same node are received close together (e.g. back-to-back cycles), we need to forward

the payload of the earlier arriving packet up the pipeline such that the ALU

instruction is issued despite an outdated trigger value being read by the later

arriving packet. Since we have a 3-stage pipeline in the packet consumer, our

data-forwarding logic multiplexes payload data across these 3 stages. This is

a key design consideration, as the data-forwarding circuit consumes significant

resources, and its resource utilization is proportional to the number of pipeline

stages. Hence, our goal is to minimize the number of pipeline stages as much as

possible, while supporting an II of 1. Note that the example in Figure 3.6 does

not show this data-forwarding feature, but its design was important to achieving

high-performance and functional correctness.

Finally, the packet consumer notifies the next stage that a node is ready for edge

processing. This notification is dependent on the scheduling strategy that we

discuss in detail in Section 3.4.1.5. The flag in the node slice (see Figure 3.5a) also

plays a minor role at this stage, as the flag indicates whether the node has any

34

+

2 3

(a) Example: Dataflow graph with a single add node with values 2 and 3 as inputs.
The node state is stored at address 0x0 inside the local node memory.

Cycle 0 1 2 3 4 5 6 7 8 9 10

(b) Example: Waveform diagram of packets arriving at the PE targeting the add node
in the example above, which is stored at address 0x0.

xxx 2’b00, ADD 1’b1 0x03 2’b01, ADD 1’b1

0x03 2’b10, ADD 1’b1 0x05 2’b11, ADD 1’b1

Cycle 0 Cycle 3

Cycle 10Cycle 7

0x0 0x0

0x0 0x0

(c) Example: Snapshots of how the node slice at address 0x0 inside the node memory
is updated at different cycles, based on arriving inputs as shown in Figure 3.6b.

Figure 3.6: An example dataflow graph and how the packet consumer handles
incoming packets at runtime to update the relevant node states.

35

outgoing edges. A node with no outgoing edges does not need to be pushed into

the scheduler pipeline, thereby saving cycles at runtime.

3.4.1.4 Packet Generator

Once a local node result has been computed and stored in memory, the result

has to be communicated along its outgoing edges. The scheduler determines a

ready node and passes its address to the packet generator. The packet generator

is responsible for iterating over and generating a packet for each of the outgoing

edges of all nodes. These packets are then injected into the PSNoC communication

framework and routed to their destination as efficiently as possible. The packet

generator is a finite state machine (FSM) that manages the entire process fluidly.

The 1b flag in each edge state guides the state transitions in the FSM.

Since the 1b flag is only available once the read transaction from the edge memory

is complete, back-to-back reads ahead in the edge memory are issued to avoid

introducing stalls in the pipeline. When the final edge of the active node is found,

all forward-reads are discarded and the node is marked complete by the packet

generator as soon as the final edge is injected into the network. We implement

these speculative edge memory read-aheads using a small 4-deep FIFO, and hence,

the packet generator can support back-to-back packet injection into the network

without stalls (assuming there is no congestion).

The FSM has a total of 9 states, and has a fixed setup cost associated with the

evaluation of each active node. This setup cost is due to the memory read latency

associated with fetching data from the node and edge memory. There are three

distinct memory reads that need to happen for each active node:

1. Read active node’s state, which is sent as a payload in each outgoing packet,

2. Read node-to-edge pointer value, which instructs the packet generator where

the active node’s fanout data is stored in local edge memory, and

3. Read packet header for each outgoing edge from the active node.

While reads (1) and (2) can be issued in parallel, read (3) cannot be issued until

the node-to-edge pointer read is complete. Hence, this results in a fixed 4-cycle

setup cost for evaluating each active node, after which, packets can be injected

36

into the network in back-to-back cycles. This set-up cost also gives us enough

cycles to notify the scheduler that the active node has been completely processed

and can be marked complete, and safely move on to the next scheduled node. We

discuss this in greater detail in the next section.

3.4.1.5 Scheduler

At any given cycle during the graph execution, several nodes may be ready for edge

processing to generate new packets (see Section 3.4.1.4). Picking an appropriate

scheduling strategy is the key contribution of this chapter, as it can influence

performance of the dataflow processor significantly, results of which are detailed

in Section 3.6. We develop an out-of-order leading-ones detector (LOD) scheduling

strategy and compare it to a näıve in-order FIFO-based scheduler to demonstrate

the performance advantage of criticality-aware scheduling.

In the simplest implementation, we can connect the packet consumer and the

packet generator with a sufficiently-deep FIFO: nodes that have computed their

result are pushed into a queue, which is dequeued by the packet generator for

edge processing. This essentially creates an in-order dataflow processor, i.e. input

packets arriving at the processor and their respective packets on the outgoing

edges are evaluated in arrival order.

However, in dataflow graphs, all nodes do not have an equal importance to the

computational flow (i.e. some nodes are more critical than others), and scheduling

nodes along the critical path with higher priority can ensure that the computation

completes sooner. In addition, the näıve FIFO design is susceptible to unpre-

dictable effects, such as network congestion, that can further delay computation

along the critical path. Finally, the FIFO-based design also wastes precious M20K

resources, as we have to provision for sufficiently-deep FIFOs to ensure that the

network cannot deadlock. We observe the M20K(s) used as a FIFO to be severely

under-utilized during the program’s execution, and as such, the M20K memory

blocks would be better utilized for storing graph (nodes and edges) data structures.

In order to implement a node scheduling strategy in hardware for dataflow graphs,

we first identify the critical nodes in the dataflow graph. To achieve this, we run

a one-time software pass that labels each node with a criticality heuristic. This

criticality heuristic is based on a well-known slack analysis technique designed for

37

dataflow graphs, where a compiler statically assigns each node a real number, Cn,

between zero and one that indicates its criticality in the dataflow graph. A Cn

close to one indicates that the node is critical to the dataflow graph evaluation, and

hence should be prioritized for evaluation inside the processor. Similarly, edges

connecting to these critical nodes should also be prioritized in the communication

network to achieve optimal performance.

The criticality heuristic, Cn, can be computed in 3 steps:

1. Label each node, n, with its as-soon-as-possible (Ln,ASAP) and as-late-as-

possible (Ln,ALAP) latency.

2. Compute slack (Sn) at each node

Sn = Ln,ALAP − Ln,ASAP

which indicates the scheduling freedom a node has in the dataflow graph. A

higher slack indicates that the node is less critical to the compute flow.

3. Finally, compute Cn with the following expression: Cn = 1 − Sn

wASAP
, where

wASAP is the length of the critical path in the dataflow graph as evaluated

by the ASAP algorithm. This expression gives a criticality-heuristic (Cn)

that has a range between 0 and 1. A node with Cn close to 1 indicates that

it lies on the critical path, whereas a node with Cn close to 0 indicates that

we can schedule this node with more freedom.

Note that this criticality heuristic computation has to be done only once after

generating the dataflow graph. This is a software-pass that is amortized over an

iterative evaluation of the dataflow graph in the application.

Once we have identified the critical nodes in the dataflow graph, we sort the nodes,

and their respective edges, in memory in descending criticality order (i.e. most

critical node at the first address in node memory). This is an important step

that reduces the challenge of picking the most critical ready node at runtime to

simply picking the ready node with the smallest local memory address. That can

be achieved in hardware by creating a bit-vector of 1b ready flags, where each bit

has a one-to-one correspondance to each address in the node memory (e.g. if bit-7

is set to 1, it means that the node stored in address 7 of the local node memory

is ready for evaluation by the packet generator). Then, we can simply feed this

38

0 0 01 1 0 1 0

LOD-8

VALID
(1)

POS
(010)

3

Figure 3.7: An example LOD-8 circuit in action, where the position of the
first 1 (colored green) from the left in the input bit-vector is identified correctly

at 010.

bit-vector into a leading-ones-detector (LOD) circuit, which would evaluate the

position of the leading one in the input bit-vector. Figure 3.7 shows an example

LOD-8 circuit that outputs the desired result. We write an LOD-based scheduler

that manages the set and reset operations to the bits in this bit-vector, which

come from the packet consumer and packet generator stages respectively.

However, the size of the LOD module needed is ∝ number of locally-addressable

node slices in each processor, which is an intractable strategy for designing a

single-cycle fully combinational LOD circuit. A fully combinational LOD circuit

not only grows in size very quickly as the input bit-vector length increases, but

also affects the system clock performance (e.g. fmax of an LOD-512 circuit drops

to below 200MHz). In our experiments, when synthesized with this näıve strategy,

the LOD-based scheduler takes up almost 800 ALMs on its own, which is a very

inefficient use of FPGA resources. To address this challenge, we design a multi-

cycle hierarchical LOD scheduler that trades off latency for a much leaner design

and improved clock performance. Fortunately, the scheduler latency can be hidden

at runtime since the packet generator is busy for a longer number of cycles servicing

the current active node. Figure 3.8 shows the design of the LOD scheduler.

The scheduler is designed using two back-to-back LOD circuits of size N and M

respectively. The node-ready flags are all stored in a MLAB memory structure,

since the overhead to store all the ready flags is only 1024b (i.e. the maximum

number of nodes per PE). MLABs in the Arria 10 FPGA are 640b simple dual-

port memory structures made up of 10 ALMs each. Hence, the node-ready flags

memory can be realized with a small 20 ALM overhead. The node-ready flags

are fractured and packed as a N×M memory structure, and the two LOD circuits

are used to determine the most critical ready node in any given cycle. The LOD

39

MLAB Memory
[Node-Ready Flags] N

M

LOD-N

LOD-M

log2N

log2M

Set/Reset Set/Reset Address

Node Ready Node Ready Address

Figure 3.8: Hierarchical (depth = 2) LOD scheduler design

scheduler now has a latency of 3 cycles, but is fully-pipelined to support back-to-

back set/reset operations. The choice of N and M can have a significant impact

on the overall resource utilization and clock performance, and by doing a small

design-space exploration, we determined N = 32 and M = 32 to give us the best

performance-resource tradeoff.

Finally, decoupling the node and edge memory as described in Section 3.4.1.1 has

a subtle positive effect on the LOD scheduler as well, since now we only need to

allocate and track node-ready flags for addresses of the node memory. If nodes and

edges were stored contiguously in the same memory structure, then the one-to-one

mapping of bit-flag to memory address would have resulted in a larger, and highly

under-utilized bit-vector (bits corresponding to addresses where an edge is stored

is never utilized).

Later in Section 3.6, we compare the performance of the LOD-based scheduler

shown in Figure 3.8 against the baseline FIFO-based in-order scheduler. We re-

fer to the baseline PE with the FIFO-based scheduler as PE-Baseline, and the

improved PE with LOD-based out-of-order scheduling as PE-DaCO.

40

3.4.2 Crossbar design in the PSNoC

As depicted in Figure 3.1, we adopt a hierarchical communication framework topol-

ogy that we refer to as the packet-switching network on chip (PSNoC). The PSNoC

is composed of crossbars to support intra-cluster communication, and a Hoplite-

Q* network to support inter-cluster communication. The crossbar allows fast local

communication between PEs inside each cluster at the expense of a higher resource

utilization budget. The size of a crossbar grows quadratically with the size of the

cluster and hence, at some point, we expect diminishing returns from moving to

larger cluster sizes. The crossbar also puts a strain on the wiring resources of the

FPGA, and hence, larger clusters also limit achieveable system Fmax.

For a cluster size of N, the crossbar is composed of (N+1) round-robin arbiters –

one round-robin arbiter for each PE in the cluster + one round-robin arbiter to the

Hoplite-Q* network. An arriving packet from the Hoplite-Q* network is always

given priority over other local packets, if there is a conflict. The round-robin

arbiters are designed for fairness, such that requests are given an equal chance, on

average, to receive a grant. This is achieved by updating the round-robin counter

appropriately after each request is granted [130].

We partition our dataflow graphs in a cluster-aware manner such that a significant

portion of the communication edges are absorbed into the richer crossbar network.

This is achieved by using a high-quality partitioner in a two-step process, where

the graph is first partitioned into clusters, following which the sub-graph assigned

to each cluster is further partitioned to the individual PEs inside the cluster.

3.5 Methodology

3.5.1 Experimental Setup

All components of DaCO are designed and written in Verilog and synthesized

using Quartus Prime v18.0. We use Verilator [112] for our simulation experiments,

where we explore the impact of different DaCO configurations on performance –

e.g. varying cluster sizes, enabling/disabling OoO scheduling, and choice of the

NoC router. The synthesis experiments focus on achieving the right resource

utilization balance on the target FPGA – factors such as LOD design, datapath

41

pipelining, memory instantiation, etc have an impact on the performance of the

final design (latency, Fmax, resource utilization). We ensure that the behavioural

simulation matches the final DaCO design we settle on.

We run each benchmark with varying system and cluster sizes. We vary total

system size from 1x1 to 16x16 (256 PEs), and group PEs into clusters of size

1–16 (powers of two). We write a C++ software backend that converts each

benchmark into a dataflow graph, and generates the necessary configuration files to

run each simulation. The backend is capable of analyzing the DAGs and producing

criticality-aware optimizations described in this chapter. We use PaToH [18] to

do cluster-aware graph partitioning.

Table 3.1: Properties of benchmarks evaluated in this study

Benchmark Nodes Edges
Critical
Path

bomhof1 1925 2408 57
bomhof2 35609 45796 501
bomhof3 75305 90264 494
s953 37671 44052 171
s1423 52310 60852 470
s1488 86035 101608 655
s1494 86444 102060 628
hamm 115616 135416 337

We extract traces from eight different sparse matrix benchmarks from the circuit

simulation domain. bomhof and hamm matrices are available from the Matrix-

Market collection, while the remaining matrices are selected from the ISCAS89

benchmark set [14]. The traces are extracted from the sparse matrix factoriza-

tion phase, which is evaluated millions of times in an iterative fashion, forming

the compute bottleneck. The properties of benchmarks used in this study are

tabulated in Table 3.1.

3.6 Results

We compare performance of the new DaCO overlay against a baseline token

dataflow overlay that has no clustering and OoO scheduling features. We refer

42

to this design as DF Baseline in this section. As mentioned previously, all ex-

periments with DaCO / DF Baseline in this chapter, unless otherwise stated, are

carried out with the Hoplite router in the PSNoC. This is done to isolate the

impact of criticality-aware scheduling inside PE-DaCO, and quantify the effect of

the clustered-PE topology. More details on the Hoplite and Hoplite-Q* NoC can

be found in Chapter 4.

3.6.1 Resource Utilization

Question: How does the resource utilization of the new OoO soft-processor compare

to the older designs? Are the tradeoffs worth it?

Table 3.2: Soft-processor resource utilization breakdown

Sub-Module ALMs Registers M20Ks DSPs
Clock
(ns)

ALU 16 17 0 3 2.9
Packet Consumer 89 301 0 0 2.0
Node Memory1 80 243 2 0 1.8
Edge Memory 16 64 2 0 1.6
Packet Generator 138 335 0 0 2.3
Scheduler (LOD) 433 279 0 0 2.2
Scheduler (FIFO) 61 116 1 0 2.1

Total (PE-DaCO) 779 1292 4 3 3.7
Total (PE-Baseline)2 457 1121 5 3 3.9
1Multipumped module
2BRAM usage scaled to match graph memory capacity of PE-DaCO

Table 3.2 gives a breakdown on the resource utilization of the soft-processors (PE-

DaCO and PE-Baseline). PE-DaCO is ≈70% larger than PE-Baseline in ALM

utilization. However, the 1 × on-chip BRAM saving, alongside the OoO schedul-

ing capability, makes this tradeoff worthwhile in two ways: (1) OoO scheduling

delivers up to 2.8× speedup over PE-Baseline overlay designs (see Table 3.3 and

Section 3.6.2), and (2) as we scale overlay sizes towards maximum BRAM uti-

lization, DaCO can accommodate 20% larger graphs in the on-chip memory than

the DF Baseline overlay (≈ 700k/1.2m nodes/edges vs 550k/950k nodes/edges

respectively).

43

With larger number of BRAMs per PE, PE-Baseline also limits maximum overlay

size to ≈540 PEs, while DaCO can continue scaling up to 600 processors.

Finally, in other devices (e.g. Stratix 10) or future design iterations where number

of BRAMs/PE balance ratio is higher, the number of BRAMs wasted on active-

ready FIFO queues could potentially increase, thereby exacerbating the bad and

ugly effects pointed out in Section 3.3.1.

Overall, the 70% ALM utilization overhead is a desirable tradeoff to make in return

for performance and resource efficiency.

Answer: The new soft-processor design, PE-DaCO, takes up ≈70% extra ALMs

than the original PE-Baseline design. However, the 1 × BRAM saving, coupled

with improved performance and better resource efficiency/scalability makes this

tradeoff worthwhile.

3.6.2 Overall Performance

Question: How does the overall performance of DaCO compare to the DF Baseline,

and competing commercial off-the-shelf CPU solutions?

Note: Results with DaCO shared in this subsection are carried out with the Hoplite-

Q* NoC router, as we want to compare best-case performance with DaCO against

other appropriate baselines.

Table 3.3 summarizes the runtime results across all 8 benchmarks. All bench-

marks, with the exception of bomhof2 beat the CPU baseline when evaluated

with DaCO. For two benchmarks (s1488 and s1494), DaCO improves baseline

performance significantly enough to overturn the performance outcome against

the CPU baseline.

bomhof2 presents an interesting outcome – despite offering the best runtime im-

provement over the dataflow baseline, DaCO still fails to beat the CPU baseline.

On further investigation, we discover that the bomhof2 trace has the least sparsity.

While the non-zero density allows DaCO to exploit ILP better than the dataflow

baseline design, the microprocessor is also able to take advantage of that signifi-

cantly. In order to beat the CPU implementation in the future, we hypothesize

44

that a better locality-aware partitioning strategy can close the performance gap

further.

Nevertheless, from a power-efficiency point of view, the FPGA-based DaCO can

deliver more power-efficient computation. For ≈60W FPGA TDP vs 130W CPU

TDP, bomhof2 now delivers ≈50% improved GFLOPs/W performance over the

CPU.

Answer: DaCO demonstrates improvements of up to 2.4× and 2.8× against DF

Baseline and Intel Xeon E5-2680 implementations respectively. However, since

modern day microprocessors and the linear algebra libraries are optimized for dense

computations, it can be challenging to beat an optimized CPU implementation for

low sparsity traces. Further investigation and optimization strategies should be

explored to close this performance gap.

3.6.3 Effect of criticality-aware scheduling

Question: Is criticality-aware scheduling, on its own, useful?

●

●

●

●

●

●

●

●
●● ● ●

● ●

1.0

1.5

2.0

2.5

0 32 64 96 128 160 192 224 256
Total PEs

S
pe

ed
up

 o
ve

r
D

F
 B

as
el

in
e

● ●

bomhof1

bomhof2

bomhof3

hamm

s1423

s1488

s1494

s953

Figure 3.9: Effect of replacing Baseline PE (in-order) with DaCO PE (out-
of-order). Cluster size fixed to 1.

Figure 3.9 shows the speedup observed when we isolate the effect of criticality-

aware scheduling inside the DaCO PEs at varying system sizes. In this experiment,

45

the DF Baseline overlay is identical to the DaCO overlay, except for the criticality-

aware out-of-order schedulers inside each PE in the DaCO overlay. We also turn

off optimizations such as clustering and criticality-aware routing in the NoC to

isolate the effect of criticality-aware scheduling in the PE as much as possible.

For most benchmarks, we observe an improvement of 1.1–1.6×. bomhof2, however,

showcases improvements of up to 2.6×, while s1423 slows down by ≈10%. As

discussed earlier, the higher non-zero density in bomhof2 allows DaCO to exploit

more ILP. Furthermore, bomhof2 has a relatively long and pronounced critical path

(i.e. only few nodes lie along the critical path), which is better exploited by DaCO.

In contrast, s1423 has many parallel critical paths, as the average criticality across

all the edges is ≈ 0.84 (vs 0.70 in bomhof2). Hence, criticality-aware routing does

not benefit s1423 as most nodes are of equal importance, and the performance

loss is due to the multi-cycle scheduling overhead in the LOD-based scheduler and

unpredictable runtime effects (e.g. congestion/deflection).

Answer: Yes, it delivers speedups from 0.9–2.6× at varying system sizes across all

benchmarks. The slowdown can be attributed to the graph structure, where exis-

tence of many critical paths dilutes the effect of strong criticality-aware scheduling.

This observation is benchmark-specific.

Table 3.3: Best-case benchmark runtimes with different types of PEs, com-
pared against a baseline CPU implementation

DF Baseline DaCO CPU1

Benchmark PEs Time (us) C N PEs Time (us)
Time
(us)

vs
Base-
line

vs
DaCO

bomhof1 256 4.2 (1.0×) 16 16 256 3.8 (1.1×) 8.9 0.5× 0.4×
bomhof2 256 81.9 (1.0×) 16 16 256 34.4 (2.4×) 23.8 3.4× 1.4×
bomhof3 256 79.1 (1.0×) 16 16 256 36.2 (2.2×) 81.1 1.0× 0.4×
s953 256 15.8 (1.0×) 16 16 256 12.9 (1.2×) 32.0 0.5× 0.4×
s1423 256 30.4 (1.0×) 16 16 256 32.2 (0.9×) 48.0 0.6× 0.7×
s1488 256 83.5 (1.0×) 16 16 256 47.4 (1.8×) 70.8 1.2× 0.7×
s1494 256 77.1 (1.0×) 16 16 256 45.3 (1.7×) 69.5 1.1× 0.7×
hamm 256 48.0 (1.0×) 16 16 256 32.9 (1.5×) 93.5 0.5× 0.4×
1Measured on an Intel Xeon E5-2680 using Eigen 3.3.4 Linear Algebra Library

3.6.4 Scheduler Efficiency

Question: How good is the LOD-based hierarchical scheduler at scheduling active-

ready nodes by criticality?

46

(a) Scheduling delay suffered by nodes in PE-Baseline

(b) Scheduling delay suffered by nodes in PE-DaCO

Figure 3.10: Scheduling delay suffered by node vs node criticality (bomhof2)

Figure 3.10 shows the scheduling delay suffered by nodes in an example trace from

bomhof2. The LOD scheduler produces a desirable criticality-aware scheduling

trend, where nodes on the critical path are prioritized for scheduling, which is

unlike the FIFO implementation. There are, however, some high-criticality nodes

in PE-DaCO that still suffer from large scheduling delay (> 5000 cycles). That is

due to the long sequential tail of the dataflow graph, which is unavoidable in the

current implementation.

47

● ● ●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

200

300

400

500

0.00 0.25 0.50 0.75
Nodes criticality (greater than)

M
ea

n
D

el
ay

−
C

rit
ic

al
ity

 P
ro

du
ct

● ●DF Baseline DaCO

Figure 3.11: DF Baseline vs DacO on bomhof2 benchmark : Average delay-
criticality product of subset of nodes with criticality greater than (x-axis).

A rudimentary delay-criticality product (DCP) heuristic can be computed for dif-

ferent sets of nodes to estimate the effectiveness of the criticality-aware scheduling

in DaCO. Figure 3.11 shows, for the experiment in Figure 3.10, that DaCO pri-

oritizes the critical nodes (≥ 0.9 node criticality) by > 2× for the DCP heuristic.

Note, despite an overall higher scheduling delay observed for all nodes (i.e. node

criticality ≥0), DaCO still delivers significant speedups over the DF Baseline im-

plementation, further highlighting the importance of criticality-aware scheduling.

The extra scheduling overhead introduced by DaCO can be attributed to the multi-

cycle hierarchical LOD-based scheduler described in Section 3.4.1.5, compared to

the simpler single-cycle push-pop read/write model of the FIFO.

Answer: The LOD circuit, unsurprisingly, performs better than the näıve FIFO

scheduler (> 2× better at scheduling high-criticality nodes), which highlights the

importance of criticality-aware execution. However, the long sequential tail, i.e. chain

of data-dependent arithmetic operations, at the end of the dataflow graph limits

the effectiveness of the LOD scheduler. In the future, dual-issue packet generators

or tighter instruction-coupling in the datapath could help overcome this limitation.

48

3.6.5 Effect of clustering

Question: Does clustering improve performance? What cluster size offers the best

resource utilization vs performance tradeoff?

s1494 hamm

s1423 s1488

bomhof3 s953

bomhof1 bomhof2

DF Baseline DaCO DF Baseline DaCO

DF Baseline DaCO DF Baseline DaCO

DF Baseline DaCO DF Baseline DaCO

DF Baseline DaCO DF Baseline DaCO
0

10

20

30

0

10

20

30

0

10

20

30

0

10

20

30

Overlay Design Configuration

T
hr

ou
gh

pu
t/P

E
 (

M
O

P
s/

se
c)

PEs/Cluster 1 2 4 8 16

Figure 3.12: Throughput/PE with varying cluster size across different bench-
marks.

In Figure 3.12, we show the effect of clustering on both the DF Baseline and DaCO

across all benchmarks. For small benchmarks like bomhof1, few PEs in a small

cluster configuration deliver the best overall throughput efficiency. DaCO delivers

better throughput/PE for most data-points, while clustering delivers significant

benefits to DF Baseline implementations as well.

Note that the total number of PEs for each benchmark/cluster-size configuration in

Figure 3.12 may not necessarily be the same, as we pick the best performing system

49

size for each cluster size/benchmark combination in the plot. This discrepancy is a

contributing factor to the non-monotonic trend observed in the processor efficiency

in Figure 3.12. There are potentially two other factors behind this observation as

well:

1. Each benchmark has its own sparsity pattern and node/edge distribution.

Smaller benchmarks like bomhof1 predictably prefer small overlay sizes with-

out clustering, as there is not much communication to optimize in the first

place. As benchmarks become larger, the DAG structure also has larger vari-

ance in graph properties (e.g. number of nodes, edges, and critical path).

This variance could also be contributing to some of these observed non-

monotonic trends.

2. Clustering introduces a partitioning problem where our objective is to local-

ize regions of computation to clusters as much as possible. We implement

this currently in a näıve greedy manner, where PaToH is first used to par-

tition the dataflow graph into clusters, and then the sub-graph assigned to

each cluster is further partitioned into its member PEs in a greedy fashion.

This entire partitioning strategy is agnostic to the NoC topology, and can

be improved for more predictable behaviour.

Table 3.4 shows the resource utilization overhead of the crossbar with different

cluster sizes. As expected, the size of the crossbar grows quadratically to cluster

size, thereby incurring significant area overheads at larger cluster sizes. From

Figures 3.12, 3.13, 3.14, and Table 3.4, we conclude that a cluster size of 2 or 4

delivers the best resource-performance tradeoff, delivering up to 1.5× throughput

improvement for 15–40% ALM overhead.

Answer: Yes, clustering improves performance as expected, as low-latency com-

munication between local PEs supported by a crossbar helps to improve overall

throughput. However, at a large cluster size of 16, resource efficiency is low as

the throughput per PE degrades below that of smaller cluster sizes. Furthermore,

since crossbar resource utilization grows quadratically with cluster size, we find

that the best performance-area tradeoff occurs at cluster size of 2 or 4 (benchmark-

dependent), where we obtain up to 1.5× throughput improvement for 15–40% ALM

utilization overheads.

50

3.6.6 Performance vs Resource Utilization

Question: How does the raw GFLOPs/sec throughput performance scale with re-

source utilization in mind?

Table 3.4: Resource utilization breakdown (ALMs) and clock performance
(ns) of the crossbar as cluster size is varied.

Cluster
Size

Round-Robin
Arbiter

Muxes Total Clock (ns)

2 4 140 147 3.7
4 28 376 404 3.7
8 245 1248 1493 3.8
16 960 4802 5762 3.9

Figures 3.13 and 3.14 show the total throughput against ALMs and M20K BRAMs

for three representative benchmarks. Overall, DaCO delivers better overall through-

put with the same resource budget, especially when considering M20K utilization.

On bomhof2 and hamm, DaCO improves peak GFLOPs/sec throughput by up to

1.2–2.4×, while the more stubborn s1423 benchmark shows 0.9–1.0× through-

put against the DF Baseline. This observation motivates the design of a selective

offloading strategy that only schedules acceleratable dataflow regions in an appli-

cation to the DaCO coprocessor on the FPGA.

Answer: DaCO improves throughputs by 0.9–2.4× over the DF Baseline as overlay

size is scaled across three representative benchmarks. However, a careful strategy

to identify and schedule desirable dataflow regions is important to ensure that the

entire application benefits with this coprocessor style execution.

51

●

●

●

●
●

●
●

●

● ● ● ●

● ● ●

0.0

0.5

1.0

0 25 50 75 100 125 150
ALMs Resource Utilization (K)

To
ta

l T
hr

ou
gh

pu
t (

G
F

LO
P

s/
se

c)

●

●
DF Baseline
DaCO

Cluster Size
● 1

2
4
8

16

(a) bomhof2

●

●

●
●

●●
●

●
●

●
●

0.0

0.5

1.0

1.5

2.0

2.5

25 50 75 100 125 150
ALMs Resource Utilization (K)

To
ta

l T
hr

ou
gh

pu
t (

G
F

LO
P

s/
se

c)

●

●
DF Baseline
DaCO

Cluster Size
● 1

2
4
8

16

(b) hamm

●
●

●
●

●
●

●
●

●

●

●

● ●

●

0.0

0.5

1.0

1.5

25 50 75 100 125 150
ALMs Resource Utilization (K)

To
ta

l T
hr

ou
gh

pu
t (

G
F

LO
P

s/
se

c)

●

●
DF Baseline
DaCO

Cluster Size
● 1

2
4
8

16

(c) s1423

Figure 3.13: Total throughput vs ALM utilization observed on three repre-
sentative benchmarks with varying system sizes

52

●

●

●
● ●

●
●

●
●

●

● ● ● ●

● ● ●

0.0

0.5

1.0

0 200 400 600 800 1000 1200
M20Ks Used

To
ta

l T
hr

ou
gh

pu
t (

G
F

LO
P

s/
se

c)

●

●
DF Baseline
DaCO

Cluster Size
● 1

2
4
8

16

(a) bomhof2

●
●

●
●

●
●

● ●
●

●
●

●
●

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

200 400 600 800 1000 1200
M20Ks Used

To
ta

l T
hr

ou
gh

pu
t (

G
F

LO
P

s/
se

c)

●

●
DF Baseline
DaCO

Cluster Size
● 1

2
4
8

16

(b) hamm

●
● ● ●

●
●

●
●

●
●

●

●

●

● ●

●

0.0

0.5

1.0

1.5

200 400 600 800 1000 1200
M20Ks Used

To
ta

l T
hr

ou
gh

pu
t (

G
F

LO
P

s/
se

c)

●

●
DF Baseline
DaCO

Cluster Size
● 1

2
4
8

16

(c) s1423

Figure 3.14: Total throughput vs M20K utilization observed on three repre-
sentative benchmarks with varying system sizes

53

3.7 Future Work

While designing the DaCO soft-processor, several important observations gave us

motivations for future improvements. We list the top three improvements that we

hope to make to the DaCO soft-processor in the near future:

1. The 4-cycle setup cost in the packet generator can be avoided by performing

an area tradeoff, where we replace part of the finite state machine with a

pipeline of active-ready nodes instead. By multipumping the edge memory as

well, we can create additional read ports that service this pipeline. As such,

as soon as an active-ready node’s packets have been completely generated

and injected into the network, the next active-ready node in the pipeline

and its packet headers are already ready for injection, thereby achieveing

back-to-back packet injection across nodes in the packet generator. This

would help mask the 4-cycle latency in the packet generator, and improve

the offered throughput into the communication network.

2. We could also create a dual-issue packet generator design that is capable

of processing two active-ready nodes at a time. This would also improve

the dataflow injection rate and improve the sustained throughput in the

communication network. This optimization would be especially beneficial at

the start of the DAG evaluation, as we observe a large number of active-ready

nodes in the beginning (see Figure 3.2).

3. To address the long sequential tail at the end of dataflow graphs, a tightly-

coupled datapath could improve the performance of the overlay. In the

scenario where a sequential chain of data-dependent instructions is identified

inside a processor, a special datapath could be designed that evaluates this

chain in a back-to-back fashion. This idea can be likened to the strong arc

abstraction used in EM-4 [103].

3.8 Conclusions

This chapter introduced three key strategies that were instrumental in the design

of DaCO: (1) adding support for criticality-aware out-of-order scheduling for 1000s

of nodes inside each PE, (2) customization of the communication framework into a

54

hierarchical topology to target the DAG sequential tail by trading off resource for

runtime performance, and (3) careful RTL design to maximize resource utilization

on the target Arria 10 AX115S FPGA. Overall, DaCO delivers up to 2.5× speedup

over the dataflow baseline, and up to 2.8× over a baseline CPU implementation,

and incurs a small 15–40% resource overhead from clustering (cluster size 2–4).

In the next chapter, we look into greater detail at the design of Hoplite-Q*, a

priority-aware packet-switching router that is used to create a network on chip for

communication between DaCO clusters.

3.9 Publications

The body of work presented in this chapter has been published in the following

peer-reviewed conference proceedings:

1. Siddhartha, Nachiket Kapre, Out-of-order dataflow scheduling for FPGA

Overlays, Overlay Architectures for FPGAs (OLAF) Workshop (co-located

with FPGA 2017), February 2017 (Position Paper)

2. Siddhartha, Nachiket Kapre, DaCO: A High-Performance Token Dataflow

Coprocessor Overlay for FPGAs, Field-Programmable Technologies (FPT)

2018, December 2018 (Full Paper)

Chapter 4

Network on Chip Design

4.1 Introduction

The shift from designing bus-based shared communication networks to network on

chip (NoC) communication overlays has been motivated by the continued develop-

ment in parallel manycore heterogeneous architectures and the increasing challenge

of designing sophisticated on-chip interconnect. Interconnect, in particular, has

been a stumbling block in realising fast and power-efficient communication medium

on System On Chip (SoC) architectures [8], as increasing wire density results in

parasitics that restrict performance and/or increase power dissipation [107]. For

example, while crossbars improve bandwidth and reliability over shared busses,

the high tradeoff in the cost of wires (O(N2) scaling) makes crossbars impractical

for rich SoC designs. Modern VLSI systems suffer from increasing wire delay (>>

gate delay) and high power consumption from wires [28, 12]. Eventually, as the

number of interconnected IP cores on an SoC increases, a network on chip be-

comes an attractive engineering option for designing the on-chip communication

framework [10]. For the many-core DaCO architecture discussed in Chapter 3, a

NoC is an obvious fit for the target implementation.

NoCs come in many flavors [4]. Design choices such as routing strategy (packet-

switching vs circuit-switching), topology (e.g. mesh, torus, ring, butterfly fat trees,

etc), routing function (Wormhole, Hot-Potato/Deflection, West-Side First), num-

ber of channels (including virtual channels), buffering strategy, etc are some of

the important features that shape the NoC behaviour. In this work, we focus

on packet-switching NoC routers, primarily because of their (1) ease of design,

55

56

and (2) suitability to dataflow/bulk-synchronous parallel (BSP) communication

patterns. While circuit-switching networks can deliver close to peak bandwidth

when a link is established, the cost of the crossbar and switching circuitry grows

at O(N2) [51]. More importantly, for dataflow-style traffic, the irregularity in the

communication pattern would incur significant overheads due to setup and idle

time. As such, since we do not know the communication pattern upfront, we opt

for a packet-switching network for the communication overlay design. Other sec-

ondary design choices enumerated above are also explained later in this chapter

in section 4.2.1.

High-performance custom routers are typically designed with an ASIC (application-

specific integrated circuit) or FPGA target in mind. While ASIC routers are

capable of delivering the best achievable throughput, the long design cycle and

heavy investment overheads often limit their applicability to many real-world ap-

plications. Furthermore, gate delay is significantly lower than wiring delay on

ASICs [28], which motivates the design of rich arbitration policies that minimize

wire lengths. FPGAs, on the other hand, are wire-rich architectures that incur

relatively smaller development costs, and their reprogrammability also offers flexi-

bility suitable for fast-changing workload environments. However, näıvely porting

an ASIC router design to an FPGA would create a bloated and slow communica-

tion framework, which is not appropriate for the FPGA-efficient dataflow overlay

goal in mind.

In the datacenter domain, we forsee large NoC-enabled FPGA chips hosting mul-

tiple applications with varying communication constraints simultaneously on the

same chip. These FPGA-based NoCs can provide high-bandwidth and low-latency

connectivity between hardware components (IP blocks, system-level interfaces) on

the FPGA in a resource-shared, cost-effective manner. FPGAs also support a rich

set of external connectivity in the form of PCIe (peripheral component intercon-

nect express), DRAM (dynamic random-access memory), and Ethernet interfaces,

which can be supported by NoCs to allow external data streams to reach different

parts of the FPGA at full bandwidth. NoCs are also suitable for the accelera-

tor domain as a communication fabric for routing traffic between spatial FPGA

datapaths.

In this chapter, we detail the design of a high-performance, resource-efficient,

FPGA-based NoC architecture that is capable of exploiting criticality in dataflow

57

graph paths to deliver improved throughput in our DaCO architecture. Priority-

aware routing is also crucial to delivering multi-tier Quality of Service (QoS) across

a range of concurrently running workloads. For example, in the datacenter domain,

delivering different levels of service based on a pricing policy could be desirable.

This can be achieved with priority-aware NoCs in a shared environment that are

capable of discriminating and prioritizing traffic based on the customer grade. To

address these needs, this chapter introduces Hoplite-Q*, a high-performance,

lightweight, priority-aware deflection router for FPGAs.

4.2 Background

4.2.1 Network on chip basics

Network on chip, as the name suggests, creates a communication network between

different processing elements (PEs) on a chip. As the number of PEs increases,

it becomes intractable to support point-to-point connections between each soft-

processor (i.e. crossbars), whereas a shared bus can bottleneck performance due

to the shared bandwidth [11, 7]. NoCs allow hardware designers to create scalable

communication frameworks that can be tailored to deliver the required routing

bandwidth for different workload types or application domains. NoCs are built

by creating a network of interconnected routers, and hence, the design choices

made on the router architecture and inter-router connectivity can have significant

impact on the NoC performance. We list three key design decisions when designing

a NoC:

• Flow control : e.g. Packet-switching, circuit-switching, wormhole-switching,

etc – For long, persistent, and predictable communication patterns, a circuit-

switching NoC (e.g. [51]) is suitable, which operates by reserving routes be-

tween communicating PEs at runtime. A packet-switching NoC (e.g. [69])

is better suited for short, unpredictable communication patterns between

processors, a feature of the benchmarks evaluated in this thesis.

• Topology : e.g. Mesh, torus, ring, butterfly fat trees (BFTs), etc. The

topologies have a significant impact on the wiring requirements of the NoC.

58

For applications which require lots of irregular inter-PE communication, a

more dense topology with high bisection bandwidth (e.g. mesh or BFT) is

more suitable, while a more sparse connectivity in a ring/torus is suitable

for applications with light and regular communication patterns.

• Routing function : The routing function impacts the size of the arbiter

inside each NoC router, which can have a significant impact on the size of

the router, and the overall performance of the NoC. Routing functions can

generally be classified into deterministic and adaptive methods [25]. In de-

terministic algorithms, packet routes are determined based purely on the

destination address, whereas, in adaptive algorithms, packet routes can also

be influenced by network health (e.g. congestion). Fully-featured adaptive

algorithms require more complex hardware implementations, which result

in bloated designs on FPGAs. In this chapter, we focus on instead on

deterministic routing functions to realize lightweight and scalable NoC ar-

chitectures for FPGAs. Some popular deterministic arbitration strategies

include dimension-ordered routing (also known as XY-routing [11]) and hot-

potato/deflection routing. The richness of the deterministic routing function

also depends on the available resources such as virtual channels or on-chip

buffers that further contribute to the size of the NoC router.

A more comprehensive survey of NoC architectures can be found in [4, 11, 25].

4.2.2 Existing NoC Routers for FPGAs

Routers can be designed with or without local buffers. Buffers inside each router

typically boost achievable routing throughput as they open up design optimiza-

tion strategies not available to bufferless designs. However, on FPGAs, buffer-rich

routers consume precious on-chip memory resources (registers or dedicated block

RAMs) and the routing function complexity can also limit resource utilization

and achieveable clock frequency. For example, FPGA routers, such as the CMU

Connect [94] and UPenn Split-Merge [54, 66], comprise of long buffers and rich

crossbars that consume thousands of LUTs and operate at≤200MHz. On the other

hand, ASIC routers like Aérgia [26] and MinBD [38] can deliver exotic features like

virtual channels (VCs), input buffers, and prioritization frameworks at ≥1GHz

clock speeds. It is impractical to design such routers for FPGAs, and hence,

59

this chapter focuses on designing high-performance but FPGA-friendly buffer-

less routers. A case for bufferless routers for NoCs was made with BLESS [85],

and since then, new bufferless router designs like CHIPPER [37] (ASIC) and Ho-

plite [65] (FPGA) have been competent additions to the router ecosystem. A

summary of deflection routers in NoCs can be found in [79]. Hoplite [65] is a

state-of-the-art bufferless deflection router that consumes only ≈60 LUTs and

runs at 2.9ns (see Section 4.2.3 below), and serves as the baseline for the work

detailed in this chapter.

In [3], the authors compare hard (baked into silicon, fixed architecture) and soft

(built with FPGA primitives, flexible design) NoCs. They observed that hard

NoCs, on average, are 20–23× smaller and 5–6× faster than soft NoCs. With

the latest Xilinx Everest [136] FPGA announcement in late 2018, which comes

with a hard integrated NoC, there is now further interest in this topic, and offers

overlay designers new avenues to exploit advantages of NoC-based communication

on FPGAs.

4.2.3 Hoplite NoC

The Hoplite [65] deflection router is a cheap, low-cost, FPGA-friendly NoC router

that uses deflection routing coupled with a unidirectional 2D torus topology to de-

liver an FPGA-optimized NoC solution. In the unidirectional 2D torus topology,

Table 4.1: Existing NoC Routers for FPGAs

Router Tech. Routing Strategy Clock

Hoplite FPGA Packet-Switching 2.9ns

PNoC FPGA Circuit-Switching 6-8ns (Virtex II)

CHIPPER ASIC Packet-Switching 1.9ns

CMU CONNECT
(2 VCs)

FPGA Packet-Switching 9.6ns

Aérgia ASIC Packet-Switching < 1ns

UPenn Split-Merge FPGA Packet-Switching 4.5ns

MinBD ASIC Packet-Switching <1ns

60

2:1

3:1PE

N

W

S/PE

E 2:1

3:1PE

N

W

S/PE

E

Figure 4.1: DOR deflection routing illustrated in Hoplite. W and N packets
are both contesting for S output port, so W gets deflected to E and has to
traverse the entire west-to-east plane, while the packet at PE is denied injection

in this cycle.

packets can only traverse in a single direction in each dimension (i.e. West-to-East,

and North-to-South), and they have to wrap around to reach destination proces-

sors that are located in the opposite direction (see Figure 4.2 for an example 4x4

system). The torus topology is especially suited to FPGAs, as the switching at the

outputs can be packed efficiently into the available six-input lookup tables (LUTs)

on FPGAs, and the unidirectional topology saves wiring costs. Hoplite routes

packets using the Dimension Ordered Routing (DOR) algorithm, where packets

are routed in the West-to-East direction (X-plane) first, before being routed along

the North-to-South direction (Y-plane). The deflection router is also a buffer-

less switch design – packets are deflected, instead of buffered, whenever there is

contention for a routing path inside a switch in any given cycle. This has a few

implications: the design is lightweight in LUT cost due to the simple control flow

logic required, but packets can suffer from high communication latencies due to de-

flections. Despite this, deflection routers can be competitive for latency-tolerant,

throughput-sensitive real workloads, as their resource-light design is desirable for

scalability.

In Figure 4.1, we show a high-level block diagram of the Hoplite router [65].

Packets can enter the router from three input ports – the Processing Element

(PE), West (W), and North (N) – and can exit from two output ports – East (E)

and South (S). The S port is shared to deliver packets to the PE and a separate

valid signal distinguishes this scenario, i.e. a packet from the N input port can

only continue down S, or exit into the PE if it has reached its destination. In

the event of contention for an output port, the packet at input PE is given the

61

R R

R R

0,10,0

1,11,0

R R

R R

0,30,2

1,31,2

R R

R R

2,12,0

3,13,0

R R

R R

2,32,2

3,33,2

�Conflict!

R R

R R

0,10,0

1,11,0

R R

R R

0,30,2

1,31,2

R R

R R

2,12,0

3,13,0

R R

R R

2,32,2

3,33,2

�Conflict!

BUFFERLESS BUFFERED

Figure 4.2: Bufferless vs Buffered Routers (R), where PE at (1,1) is sending
a packet to (3,3). In the instance there is a conflict, the packet is deflected to
the next available port (East in this case) in the bufferless network. In contrast,
in a buffered network, the same packet can be stored locally in that cycle, and

then safely injected in another cycle towards its destination.

lowest priority, i.e. no packet is accepted into the network from the PE (e.g. soft-

processors, system interface) in that cycle. If there is contention for the S output

port from valid packets at N and W input ports, then the N packet is always

given routing priority, while the W packet is deflected to the E output port. This

arbitration strategy trades off packet latency for lightweight, bufferless switch

design. Figure 4.1 shows an illustration of this deflection DOR-based routing

employed in Hoplite.

4.2.4 Hoplite Limitations

The lightweight Hoplite [65] NoC provides an FPGA-optimized solution for com-

posing large chip-wide NoCs scaling to thousands of processing elements on the

chip. Hoplite is known to outperform competing FPGA NoCs such as CMU Con-

nect [95] and Penn Split-Merge [55] designs by 1.5× in throughput (packets/cycle)

while being 20–25× smaller in size, and operating at a 3–5× faster clock frequency.

However, this low cost comes at a price: high deflection routing penalty for a single

application, and inability to discriminate between traffic from multiple distinct

applications. Figure 4.2 shows an example where there is a high conflict rate at

(1,3), and hence packets traveling from (1,1) to (3,3) can get perpetually deflected

in the bufferless Hoplite network. In contrast, with buffers, it is possible to design

62

arbitration strategies that guarantee progression in the communication network.

This phenomenon is known as livelock, which Hoplite networks are susceptible

to and hence care has to be taken when partitioning workloads on the overlay.

HopliteRT [127] addresses this issue elegantly by modifying a single arbitration

rule, but can still fail under special scenarios and does not offer any solutions for

other above-mentioned limitations.

In this work, our motivation is to address these issues by introducing best-effort

support for quality of service (QoS) outcomes in the Hoplite NoC router. We

show a high-level view of the structural adaptations to the router in Figure 4.3,

which we call Hoplite-Q*. To enhance routing choice in the Hoplite routers, we

add a single packet buffer to the Hoplite router. The buffer and associated multi-

plexing circuitry helps to improve the overall NoC throughput and mitigate long

packet latency delays significantly. We show how to exploit this choice by includ-

ing priority-driven routing inside the buffered deflection router. We augment the

dimension-ordered routing policy with rules that enable priority-aware selection

of which packets to deflect. This requires tagging each packet with extra prior-

ity bits to help determine the routing decision. Finally, together with a sensible

arbitration strategy, Hoplite-Q* also prevents livelock by ensuring progression in

the communication network at all times. This strategy revolves around updating

packet priority-tags on every deflection, which is explained in greater architectural

detail in Section 4.3.3 later in the chapter.

4.2.5 Quality of Service (QoS) in existing routers

The majority of existing bufferless routers [65, 37, 85, 76] dedicate limited at-

tention to delivering varying QoS for mixed-priority multi-application workloads.

In fact, any priority-aware arbitration rules, such as the Golden packet rule [37],

Silver packet rule [38] or Oldest-First priority scheme [76], are designed to reduce

the number of total deflections and provide guarantees against livelock for the en-

tire workload rather than individual applications. MinBD [38] uses a side-buffer to

reduce resource utilization and power costs associated with buffering, which is sim-

ilar to our buffering strategy developed in this work. Unlike MinBD, however, we

use a 1-flit (1-packet) deep side-buffer, as opposed to their 4-flit deep side-buffers.

This strategy is sufficient for our work due to the unidirectional 2D torus topology

in use, which generates fewer deflections than the bidirectional 2D mesh topology

63

2:1

3:1PE

N

W

S

E

(a) Hoplite Router

4:1

4:1

B

PE

N

W

2:
1

S

E

(b) Hoplite-Q* Router

Figure 4.3: Hoplite-Q* switch organization with enhancements. (1) Addition
of priority-bits accompanying each packet, (2) Addition of buffer B to store
deflected W and N packets. (3) Enhanced arbiter (not shown) for selecting
between W , N , PE, and B inputs, and (4) Adders to update priority-bits of

deflected packets (not shown).

in the MinBD NoC. HopliteRT [128], another flavour of the Hoplite router, delivers

QoS latency bounds with minimal hardware modifications, but is also incapable of

distinguishing QoS demands across different priority bins while also suffering from

limited choice in the routing. Buffer-rich ASIC routers (e.g. [26]) can employ QoS

techniques (e.g. live slack estimation [26], Globally-Synchronized Frames [74], Stall

Time Criticality [27]) which are exorbitantly expensive in logic to use directly on

an FPGA fabric, as discussed earlier. Furthermore, these techniques are primarily

designed to ensure routing fairness in the network and prevent catastrophic events

such as livelock. Our work on Hoplite-Q* builds on the low-cost Hoplite router

instead and delivers both routing guarantee (i.e. no livelock) and programmable

QoS features useful for mixed-criticality and/or multi-tenant ecosystems.

4.2.6 Contributions

The contributions detailed in this chapter are as follows:

• The design of a refined, parameterized Hoplite NoC router with a single buffer

(Hoplite-B), and a fully-featured priority-aware design (Hoplite-Q*). Hoplite-

Q* supports both static and/or dynamic packet priority management features

64

that allow the routers to route packets based on a priority-tag embedded inside

each packet’s header.

• Evaluation of router designs with various real-world dataflow workloads with

both the baseline dataflow processor and our proposed PE-DaCO (see Chap-

ter 3) overlay architecture.

• Evaluation of router designs on various statistical and real-world benchmarks

to quantify improvements in throughput, latency and cost.

• Evaluation of mixed-priority multi-application workloads and measurement of

associated QoS outcomes for statistical and real-world benchmarks.

4.3 Priority-Aware Hoplite

In state-of-the-art deflection routed NoCs, all runtime routing decisions are based

on simple deterministic routing algorithms like DOR that depend solely on the

destination address. However, real-world systems need to route traffic from mixed-

priority, multi-application workloads where not all packets are created equal. We

can add priority awareness to a NoC by adding additional priority bits in each

packet (we call it the priority-tag) and using those bits to determine packet route.

When used in buffered NoCs like those in [79, 26], the lower priority packets can

simply wait in the buffer a little longer. If we apply this näıvely to the Hoplite

NoC, there is limited impact on QoS because of fewer routing choices. Thus, we

must rethink how we can make priority-awareness more amenable to the Hoplite

NoC design.

In this section, we look at three main design adaptations necessary to Hoplite that

balance FPGA cost and resulting NoC performance:

1. The design of a priority-aware routing function,

2. Introduction and sizing of the buffer in the router to boost routing choice,

and any associated buffering policy design, and

3. Priority assignment method (statically at compile time, and/or dynamically

updating packet priorities at runtime).

65

We perform a careful cost-benefit analysis and quantify the effect of each proposed

change.

4.3.1 Priority-Aware Routing Function

The DOR routing function in the original Hoplite statically prioritizes N packets

over W packets, where PE packets have the least priority. To support priority-

awareness, at the very least, we must allow W packets to be able to deflect N

packets (e.g. see Figure 4.2, where a high-priority packet on the west-to-east plane

must win the conflict at (1,3) to progress to its destination). This necessitates

the addition of the N → E turn in the switching crossbar (shown as the red turn

in Figure 4.3b). For this configuration, we can design a priority-aware routing

function on two NoC input ports – N and W – such that the less critical packet

is always deflected to the E output port. Under this model, packets at PE are

still given the least importance, regardless of their priority just like in the original

Hoplite design.

Unfortunately, simply adding a N→E turn does not result in a good priority-

aware router since the packet at PE would still always be denied injection. This

is unacceptable as our goal is to design a router that prioritizes packets based solely

on their priority, and not their port of origin. To address this, we add a buffer, B,

in the router to hold N or W contending packets (shown in blue in Figure 4.3b),

and allow the PE packets an opportunity to enter the NoC if they have higher

priority. We then adjust the priority function to consider four inputs at N , W ,

PE and B ports. We also support buffer redirection, where a low-priority packet

in a buffer can be ejected to allow a higher-priority packet to be buffered instead.

The addition of such a buffer is counter-intuitive as high buffering costs were the

key motivating factor behind the design of Hoplite. Our experiments show that a

single buffer location delivers most of the benefits we desire while only increasing

design cost modestly. The local buffer also mitigates the number of deflections at

runtime even without priority, which we quantify later in Section 4.5.2.

When designing the priority-aware router, we were faced by two key research

questions: (1) how do we update the packet priority-tag, and (2) how do we

determine which packets get to use the buffer? We answer these questions in the

next three sections.

66

Vld Ps Address Payload

Figure 4.4: Example packet format in Hoplite-Q network. Packets now have
an additional Ps-bit static priority-tag (in blue)

4.3.2 Static Priority

For FPGA applications where communication pattern is known at upfront, we can

identify priority classes statically at compile time. A good example of this can be

found in dataflow graphs, where nodes and edges along the critical path(s) can be

assigned higher priority classes at compile time to improve runtime performance.

These are static priority bits that do not change value as they traverse the NoC.

We call this NoC router design Hoplite-Q, which only uses the statically-assigned

priority-tag to route NoC traffic.

• For applications with dataflow-type dependencies, the compute structure (de-

pendency graph) can be extracted at compile time. We can then run traditional

slack analysis [83] algorithms on the dataflow graphs to determine the priority of

each edge in the graph. Such analysis reveals the packets along the critical paths

in the application that must be prioritized in the network for faster completion.

• For applications with no dataflow dependencies, such as Bulk-Synchronous Par-

allel (BSP) workloads, there are no dependency chains or critical paths in the

design and a Manhattan-distance metric can be used to estimate priority. A

packet that must traverse a longer source-to-sink route is likely to suffer from

more deflections at runtime.

• In multi-application scenarios, we can assign priority to packets based on the

quality of service desired by each application. In the extreme case, each applica-

tion is assigned its own unique priority class. We focus on these mixed-priority

multi-application scenarios for evaluation of Hoplite-Q.

Packets in the Hoplite-Q network have a Ps-bit priority-tag (see Figure 4.4), the

value of which is computed at compile time. This value can be computed as a

function of two main factors: (1) the criticality of the packet within the application

(intra-application priority, e.g. critical path in dataflow graph), and (2) the priority

of the application in a multi-application shared environment (inter-application

priority), set by the overlay administrator.

67

The resource impact of this design is the addition of Ps extra bits of wiring on every

NoC link. Consequently, the DOR arbitration logic is also modified to implement

the priority-aware routing in the NoC. We empirically explore the choice of Ps

to decide what is the best configuration for realistic FPGA designs. More bits

will deliver greater discrimination in application behaviour on the NoC, but will

require more wires and logic resources. Figure 4.5 shows the effect of increasing

Ps on the logic utilization cost of the router.

While this is a start, static priority alone is insufficient for several reasons:

• Static priority assignment may also lead to livelocks where packets with lower

priority are always deflected without eventual delivery.

• Packets may get trapped in the buffer (B) for long durations, thereby limiting

the usefulness of the buffer.

• Static priority tagging does not account for NoC congestion effects and other

dynamic events in the system, which may limit progression of packets in the

network.

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

ALMS Registers

4 8 12 16 4 8 12 16

180

200

220

240

200

250

300

Priority−Tag Bitwidth (P)

C
ou

nt

● Hoplite−Q Hoplite−Q*

Figure 4.5: ALM and register cost of Hoplite-Q and Hoplite-Q* as bitwidth
of priority-tag, P , is increased.

4.3.3 Dynamic Priority

As shown in the previous section, there are undesirable side-effects with priority-

aware routing using statically assigned priority-tags alone. This motivates us

68

to consider a dynamic adaptation to the priority-aware routing function, which

improve the NoC in the following ways:

• We can increment packet priority on each deflection to account for the age of the

packet in the NoC. Thus older packets will get higher priority and facilitate their

traversal through to NoC to eventual delivery at their destination. These dy-

namic updates are important for preventing livelock as well, since static priority

assignments could repeatedly deny service to the same low-priority packet.

• Expedited delivery of older packets also allows faster release of valuable NoC

resources back to the active applications on the overlay.

• For multi-application workloads, dynamic priority updates can occasionally al-

low lower priority applications to acquire higher priority to accelerate delivery.

For best-effort QoS deliveries, this results in better utilization of NoC resources

and avoids denial-of-service (DoS) to lower priority applications during runtime.

• Finally, dynamic priority updates are also applied to the packets waiting in the

buffer. This allows them to acquire higher priority and eventually vacate the

buffer slot.

When dynamic priority update support is added to Hoplite-Q, we denote the new

router design as Hoplite-Q* in this thesis.

Vld Ps Pd Address Payload

Figure 4.6: Example packet format in Hoplite-Q* network. Packets now have
an additional (Ps+Pd)-bit static and dynamic priority-tags respectively(in blue)

The resource impact of this design is the addition of a Pd-bit adder in each router

for each outgoing network port, and extra Pd bits (see Figure 4.6) of wiring in

each NoC link. Figure 4.5 shows the logic utilization cost of Hoplite-Q* as the

total size of the priority-tag is increased. As expected, compared to Hoplite-Q,

Hoplite-Q* requires more logic resources for implementing the adders and richer

arbitration logic.

4.3.4 Buffering

As discussed earlier, we need to add a buffer to Hoplite to increase the number

of routing choices in each switch hop. This increased choice comes at the cost

of ALMs and FFs to implement the buffer, and a 2:1 multiplexer for writing

69

4:1

4:1

B

PE

N

W
2:
1

S

E

(a) Hoplite-B

3:1

3:1

B

PE

N

W

2:
1

S

E

2:1

(b) Hoplite-B* (Variant)

Figure 4.7: Hoplite-B switch design and a variant Hoplite-B* design. Hoplite-
B* uses 3:1 multiplexers at the output E and S ports, while utilizing an extra

2:1 multiplexer to multiplex between B and PE input ports.

to the buffer. We empirically observe a depth of 1 to offer the best balance

between cost increase and performance improvements, which we discuss in greater

detail in Section 4.5.1 below. Packets will enter the buffer in the event of a NoC

conflict where two packets desire the same output port. Packets will leave the

buffer when their priority is higher than other packets at the router. The buffered

packet can also get forcibly ejected in special scenarios, such that the buffer is

always utilized to service the highest-priority packets at every cycle. With dynamic

priority schemes, we can ensure that the waiting packets will eventually acquire

sufficiently high priority to make progress in the NoC.

Even in the absence of priority, the presence of a buffer can mitigate the effect of

deflection penalties. If the injection rates in the NoC are moderate, the occasional

buffering event can avoid the long deflection round-trips in the ring and boost

performance. To separate the effect of buffering from priority, we consider a single

buffer router (Hoplite-B) design, and compare its performance and area tradeoffs

against other priority-aware Hoplite-Q(*) designs.

70

4.3.5 Hoplite-B variants

Figure 4.7a shows how a buffer can be added to the original Hoplite router design

to create a new design which we refer to as Hoplite-B. The arbiter (not shown in

figure) in Hoplite-B now takes in up to four input packets (N , W , B, and PE)

and routes packets to three output destinations (S, E, and B). Since packets

can come in from four different input ports, the output multiplexers at both S

and E output ports have to be upgraded from 3:1 to 4:1. Note that the N → E

route (colored red) is not used by the Hoplite-B arbiter, and can be removed if

priority-aware routing is not required. However, this path is crucial for enabling

the desired priority-aware routing features as explained in Section 4.3.1 above.

There is, however, another way to design Hoplite-B that offers an area-performance

tradeoff. Figure 4.7 highlights the architectural difference between the utilized de-

sign (Figure 4.7a) and the variant (Figure 4.7b), which we refer to as Hoplite-B*

in this section. In Hoplite-B*, an additional 2:1 multiplexer switches between B

and PE input packet ports, such that the buffered packet always has priority over

the input packet at the PE port (i.e. the select line of the new 2:1 multiplexer is a

buffer valid signal for the packet in B). This reduces the size of the multiplex-

ers required at the output of the router from 4:1 back to 3:1. When synthesized,

the Hoplite-B* design delivers a small resource utilization advantage (≈4 ALM-

s/router) over the Hoplite-B design. If QoS is not a concern and the 4 ALMS

resource overhead associated with Hoplite-B is unacceptable, then the Hoplite-B*

design should be utilized instead.

However, when designing Hoplite-Q, there is a subtle but key behavioural differ-

ence that limits the Hoplite-B* router’s applicability to serve as a building block.

Due to the implicit B > PE priority rule enforced by the new 2:1 multiplexer in

Hoplite-B*, a buffered packet will starve injection from the connected PE. This

is further exacerbated in mixed-priority multi-application scenarios where a low-

priority packet stuck in the buffer can starve injection of high-priority packets

from the PE. Even a smarter select line for the new 2:1 multiplexer, which allows

a high-priority packet from the PE to bypass the low-priority buffered packet, does

not help. In practice, this “bypass” design quickly reduces to the baseline Hoplite

design at high injection rates, as low-priority packets get stuck in the buffers in-

definitely, thereby eliminating any throughput advantages offered by local buffers.

From our experiments, we observed that a low-priority packet that is stuck in a

71

high-priority application region occupied the buffer for a substantial number of

cycles, thereby limiting the ability to provide desirable QoS to in-flight packets in

the network. This negative effect was particularly pronounced when the offered

injection rate into the network exceeded the rate that the NoC could sustain. In

conclusion, a priority-aware router must prioritize delivering QoS to in-flight pack-

ets to allow progression in the network to achieve the desirable routing behaviour.

From our experiments with Hoplite-B*, we concluded that any minor resource

utilization savings are not worth the QoS routing penalty, and hence, we build our

QoS-driven routing function on top of Hoplite-B.

4.3.6 Summary of Hoplite-Q* Adaptations

We summarize the structural changes to the Hoplite router shown in Figure 4.3:

• We need a wider east multiplexer to support N → E and B → E routes. Thus,

we now need a 4:1 multiplexers instead of the 2:1 multiplexer in the original

design.

• We also need a wider south multiplexer to support B → S route. This increases

multiplexer width from 3:1 in the original configuration to 4:1 in Hoplite-Q*.

• We introduce an extra buffer B and an associated 2:1 multiplexer to determine

which of the two incoming packets from N or W gets written to the buffer. The

PE logic does not need to be modified and can continue to use the “ready/valid

handshake” network interface in the original Hoplite NoC.

• We design a priority-aware routing function that selects between packets from N ,

W , B, and PE ports. The multiplexers in the switching fabric must be widened

by P bits as the NoC ports now carry P bits of extra priority information.

For dynamic updates to the priority-tag, we need a Pd-bit adder to revise the

priority values based on deflection events.

4.4 Methodology

In this section, we provide details on our implementation and experimental de-

sign methodology. We also give a brief background on the benchmarks used to

characterize our new router designs.

72

4.4.1 RTL Implementation and Simulation

We describe RTL for all router designs and compile the designs with Altera Quar-

tus Prime Standard Edition 16.0 targeting the Arria 10 AX115S device to generate

post-fitting FPGA implementation metrics. We summarize the ALM logic utiliza-

tion results in Table 4.2. It is clear that the design adaptations to Hoplite cost

extra resources.

Table 4.2: Routers Resource Utilization (ALMs), 8b priority tag where appli-
cable (56b–64b packet length, with 32b payload)

Switch Crossbar % Arbiter % Total

Hoplite 33 59 4 7 56
Hoplite-2× 72 60 10 8 121
Hoplite-B 40 52 8 10 77
Hoplite-2B 40 31 9 7 127

Hoplite-Q 40 22 108 61 178
Hoplite-Q* 40 19 127 59 215

Table 4.2 also shows logic utilization costs of two other router designs (Hoplite-

2B and Hoplite-2×), which are described in detail in Section 4.5.1 below. It

is important to observe that the Hoplite-2× design, which replicates the NoC,

doubles both the ALM and wiring cost. Hoplite-2B adds resources because of a

larger buffer but preserves wiring cost.

Hoplite-Q and Hoplite-Q* require a more complex arbitration function but are

within 3–3.5× the ALM cost of baseline Hoplite while keeping wiring costs similar.

As we will see later in Section 4.5, the increase in resource cost gives us the priority-

awareness properties we desire in our system.

We run cycle-accurate simulations of the RTL using Verilator [112], which gener-

ates fast C++ code from synthesizable RTL. Our C++ testbench can route traffic

from various synthetic patterns, as well as communication traces from real-world

benchmarks.

We also run synthetic workload experiments, where all PEs are configured to inject

2048 packets under various traffic patterns (see Table 4.3) and at varying injection

73

rates from 1% (1 packet injection attempt every 100 cycles) to 100% (1 packet

injection attempt every cycle). We evaluate the performance of Hoplite-Q(*) on

multi-application traces which simulate multiple instances of the application op-

erating in different regions of the NoC. We explore various NoC system sizes: 1×1

(single PE) to 16×16 (256 PEs) configurations. Each packet carries a 32b pay-

load, and 8b address information along with P bits of priority information. Data

communication between PEs is restricted to single-flit packets. Our experiments

measure in-flight NoC latency, source queueing time, total packet latency, and

sustained throughput metrics of the resulting implementation. We quantify the

effect of system size, priority-tag bitwidth, static/dynamic priority-aware routing,

along with variations due to real-world dataset.

4.4.2 Benchmarks

Synthetic NoC Traffic Patterns

Table 4.3 summarizes the synthetic NoC traffic patterns used in this study. These

are well-known synthetic traffic patterns [2] that are useful for stress-testing a

target NoC architecture. We develop a custom PE that is capable of generating

and injecting packets into the network that mimic each traffic pattern.

Table 4.3: NoC Statistical Traffic Patterns

Pattern Formula Examples (8x8 NoC)

Random dstx = rand()%Nm Any possibility

Bitrev dstx = bitrev(srcx)%Nm (1,3) → (4,6)

Transpose dstx = srcy%Nm (4,7) → (7,4)

Neighbour dstx = (srcx+1)%Nm (2,5) → (3,6)

1Complement dstx = bxor(srcx,0xf)%Nm (0,5) → (7,2)

Tornado dstx = (srcx+Nm

2 -1)%Nm (0,3) → (3,6)

2Local dstx = local rnd(srcx,σ)%Nm e.g. σ = 2, (3,3) → (2,2) to (4,4)

dstx and dsty computed in the same fashion
Nm = Maximum number of PEs in X or Y-plane
1bxor = bitwise-XOR
2local rnd() = returns random number localized to σ

2 radius of input

Bulk Synchronous Parallel (BSP) abstraction

74

Table 4.4: Sparse matrix BSP benchmarks used in this study

Benchmark Domain Nodes/Edges

mcca
Non-LTE (local thermodynamic equilibrium) prob-
lem from astrophyics

180/2.7k

lns511 Fluid flow modeling benchmark 511/2.8k

bp1600
Simplex method basis matrix from the Harwell-
Boeing Collection

822/4.8k

simucaddac
SPICE circuit simulation benchmark for 90nm pro-
cess technology

654/5.5k

jpwh991
Computer random simulation of a circuit physics
model

991/6k

add20 Circuit netlist of a 20-bit adder 2.4k/17k

We extract benchmarks from the Bulk Synchronous Parallel (BSP) [42] domain,

which is a well-known compute abstraction that represents computation as a graph

consisting of nodes (computation) connected by edges (communication). A BSP

graph is evaluated in a synchronized lock-step fashion, where computation and

communication occur in distinct stages separated by a global synchronization bar-

rier. The NoC is utilized in the communication phase of the BSP workload, where

a large number of packets are injected into the network and the system waits for

all deliveries before proceeding. Such BSP applications are typically iterative ap-

plications that converge to a solution, and communication optimizations greatly

influence program runtime. Some popular applications include Pagerank [82, 109]

and Sparse Matrix-Vector Multiply [139, 140]. In order to test these benchmarks

on DaCO, we made modifications to the PE to support BSP-style injection of

traffic into the NoC.

Table 4.4 summarizes the BSP benchmarks used in this study.

Directed Acyclic Graphs (DAGs)

As explained in Chapter 2, token dataflow is a computing model that evaluates

explicitly on the directed acyclic graph (DAG) of an application. In Chapter 3, we

showed how we can build a custom dataflow-inspired soft-processor and evaluated

its performance on a set of benchmarks from the circuit simulation domain. We

use the same benchmark set (see Table 3.1 in Chapter 3) in our experiments in this

chapter, but instead focus on quantifying the effect of the NoC design on DaCO’s

performance. Each edge in the DAG is statically assigned a criticality at compile

time by using the well-known slack analysis algorithms described in Chapter 3.

75

We use “criticality” and “priority” interchangeably in this chapter to denote the

importance of a communication edge (i.e. packet) in the DAG and in the network.

The results are detailed in Section 4.5.6, where we isolate and quantify the impact

of the Hoplite-Q* NoC when used with either the baseline in-order PE or the novel

out-of-order PE-DaCO.

4.5 Results

We quantify the effect of priority-aware routing on BSP and dataflow in this

section. Each sub-section here is designed to answer a specific research question,

the answer to which is summarized at the end of the sub-section.

4.5.1 Baseline Calibration Tests

Question: Instead of adding a buffer to Hoplite, can we use the FPGA resources

in another way to achieve better results, both in terms of resource utilization and

speed? If not, what buffer depth should be used?

The extra resources used by Hoplite-Q* could be theoretically reused to create

deeper buffers or replicated communication channels. These are simple and ob-

vious alternatives, which have the potential to improve NoC performance signifi-

cantly and also offer insights into the design for priority-aware Hoplite. We com-

pare the performance and resource utilization trends of baseline Hoplite against

1-deep (Hoplite-B) and 2-deep (Hoplite-2B) buffered-Hoplite, as well as a two-

replicated-channel (Hoplite-2×) solution.

In Figure 4.8, we quantify the resulting throughput and latency performance of

Hoplite, Hoplite-B, Hoplite-2B and Hoplite-2× designs for UNIFORM RANDOM traffic

at 64 PEs.

Hoplite-B provides a significant improvement over Hoplite in throughput (1.5×)

and latency performance (1.3×). Hoplite-2B improves the throughput perfor-

mance further but only marginally (1.6× over Hoplite, 1.1× over Hoplite-2B).

Curiously, at an offered injection rate of ≥0.2, the average packet latency delay is

76

●
●

●

● ●

●

●

●●

●

● ●

●

●

Mean Packet Delay (Cycles) Sustained Throughput
(Packets/Cycle/PE)

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

0.05

0.10

0.15

0.20

2

4

6

Offered Rate (Packets/Cycle/PE)

● Hoplite Hoplite−2B Hoplite−2X Hoplite−B

Figure 4.8: Average packet latency and sustained throughput vs offered
throughput on 8×8 NoC with uniform random traffic

higher in Hoplite-2B than Hoplite-B, despite higher sustained throughput. This ef-

fect can be attributed to the slightly deeper buffers in Hoplite-2B and head-of-line

blocking. Overall, both Hoplite-B and Hoplite-2B improve NoC communication

throughput performance by up to 60% by mitigating the deflection penalty suffered

by packets.

The dual-channel NoC, Hoplite-2×, achieves the highest throughput of all designs

(1.7× over Hoplite), simply because packets can now be routed over two channels,

instead of one, in parallel. The lack of buffers mean that packets still suffer long

deflections in each channel, and hence, the average packet latency is close to that

observed in single-channel Hoplite NoCs.

The NoC saturation point is also slightly higher in all three Hoplite-B, Hoplite-2B,

and Hoplite-2× NoCs (0.2 packets/cycle/PE) when compared to baseline Hoplite

NoC (0.15 packets/cycle/PE).

In Figure 4.9, we illustrate the tradeoffs between performance and logic resource

utilization for these router designs using post-fitting metrics (ALM cost, and oper-

ating frequency). At 16×16 PEs, we observe a 70% improvement in throughput for

an additional 40% resource cost when comparing Hoplite-B against baseline Ho-

plite NoC. Note that, for the target Arria 10 FPGA, the ALM resource utilization

is still under 5% for the 16×16 NoC using Hoplite-B routers.

77

●

●

●
●

●
●

●
● 1.4x

1.7x

1.6x 1.1x

1.9x1.8x

0

2000

4000

6000

0 5 10 15 20 25 30 35

Resource Utilization (Thousand ALMs)

S
ys

te
m

 T
hr

ou
gh

pu
t

(M
ill

io
n

P
ac

ke
ts

/s
)

● Hoplite Hoplite−2B Hoplite−2X Hoplite−B

Figure 4.9: Sustained throughput (millions of packets per second) vs resource
utilization (ALMs)

The same comparison between Hoplite-2B and Hoplite-B highlights the dimin-

ishing performance returns – only an additional 10% improvement in throughput

performance for 70% increase in resources used on the FPGA. This is supported

by trends observed in [68, 38], where deeper buffers do provide improvements, but

the most significant improvement comes from just one stage. Unlike [68] however,

our solution is cheaper and does not use any BRAM resources and shares a single

buffer location for holding deflected packets instead of a per-port buffer.

Hoplite-2× offers a solution in between Hoplite-B and Hoplite-2B, but there is still

an inefficient use of logic resources – we observe a 7% improvement in performance

for 60% increase in resource utilization over Hoplite-B. Furthermore, increasing

the number of communication channels on the NoC requires double the wiring

resources that adds complexity to the overall design for limited benefit.

These baseline calibration tests suggest that a single buffer location offers a bet-

ter return on investment of FPGA resources, when compared to the dual-buffer

approach. In addition, minimizing the buffer size also delivers better power effi-

ciency, as static and dynamic power consumption of on-chip buffers is expected

to be smaller. Finally, when considering the Hoplite-2× NoC design, we observe

a significant increase in ALM cost (and wiring cost) without a commensurate im-

provement in performance. Overall, the lightweight buffering in Hoplite-B strategy

78

delivers the most effective balance between resource usage and increased perfor-

mance. Therefore, these obvious alternative NoC router designs (Hoplite-2B and

Hoplite-2×) are not competitive and are eliminated from further consideration.

Answer: Our calibration tests show that adding just a single buffer to Hoplite offers

the best tradeoff in terms of resource utilization and throughput performance.

4.5.2 Effect of Buffering (Hoplite-B)

Question: How does adding a single buffer to Hoplite impact the throughput per-

formance of the NoC across different synthetically generated traffic patterns?

Tornado Transpose

Local (Sigma = 4) Neighbour

Bitrev Complement

0 .25 .5 .75 1 0 .25 .5 .75 1

0 .25 .5 .75 1 0 .25 .5 .75 1

0 .25 .5 .75 1 0 .25 .5 .75 1

0.05

0.10

0.15

0.0
0.1
0.2
0.3
0.4
0.5

0.025

0.050

0.075

0.100

0.125

0.1

0.2

0.05

0.10

0.05

0.10

0.15

0.20

Offered Throughput (Packets/Cycle/PE)

S
us

ta
in

ed
 T

hr
ou

gh
pu

t (
P

ac
ke

ts
/C

yc
le

/P
E

)

Hoplite Hoplite−B

Figure 4.10: Sustained vs Offered Throughput for Hoplite and Hoplite-B
under various traffic patterns on an 8×8 NoC.

79

Figure 4.10 compares performance of a Hoplite NoC to a Hoplite-B NoC under

various statistical traffic patterns for an overlay system size of 8×8. The sustained

throughput of all traffic patterns evaluated by the Hoplite-B router NoC improves

by 1.2–2.4×, depending on the pattern type and offered throughput. Some notable

observations include:

Tornado: This traffic pattern creates communication in clusters that contain PEs

from each row in a 2D NoC. By adding the buffer, the Hoplite-B router is capable

of absorbing these deflections, and can deliver up to ≈2.4× improvement (1.4×
average) in overall sustained throughput.

Neighbour: This traffic pattern creates very few deflections, since the packets

have a short source-to-destination distance to travel, and the routing direction

of traffic lines up with the unidirectional 2D torus topology of our NoC. The

Hoplite-B router NoC, however, is capable of dealing with the reduced deflections

particularly well. On average, the sustained throughput improvement for the

Neighbour traffic pattern is 1.3× across all injection rates.

Transpose: Both Hoplite and Hoplite-B router NoCs have similar throughputs

with this traffic pattern. This is due to the presence of self-communicating PEs,

e.g. (0,0) → (0,0) or (1,1) → (1,1) along the diagonal. Since both Hoplite and

Hoplite-B are agnostic to packet priority, the input PE port in the router is always

given the least routing priority by default, hence, packets from these PEs are

suppressed for most cycles as they are always contesting for the output S port.

Naturally, these diagonal PEs serve as a throughput bottleneck, and as a result,

produce very similar sustained throughput trends with both Hoplite and Hoplite-B

NoCs.

Bitrev, Local, Complement : We observe up to 1.3–1.5× improvements in

throughput at high injection rates for these traffic patterns. The Local pattern is

especially common in real-world applications, which motivates us to keep hold of

the advantages offered by introducing a buffer in Hoplite.

Finally, since these are statistical traffic models with no inter-packet dependencies,

Hoplite-Q/Hoplite-Q* deliver the same performance as Hoplite-B for these single-

application synthetic benchmarks.

80

●●● ● ●●
●

●

●

●●
●

●

●

●
●

●● ● ● ●
●

● ●

● ●
●

● ●● ●

● ●

●
●

●

●

●
●

●

●
● ● ●

●

●●

●

● ●● ●●
●

● ● ●●

●

●● ● ●●● ●●● ● ●
●

●● ●● ●

●

●● ●● ● ●●●●● ●

●

●
●●●● ● ● ●●● ● ● ●● ●●

●
●

●● ●●
●

●

●

●●

●

●● ●● ●

●

●●
●

●●● ●● ●●● ●● ● ●

●

●
● ●

●

●

● ●●
●

●

●● ● ● ●●● ●●
●

●

●

●
●

●● ●●●

●

●
●

● ● ● ●●
●

●●●

●
●

● ●●

●

●

●
●

●
●●

●

●

●

● ●●● ●●● ●

●

● ●●

●

●●● ●
●●

● ●

●

●
●

●●
●

● ● ●●●

●

●● ● ● ●● ●
●

●

●
●

●
● ●●●

●
● ●● ●

●

●

●

●

●●● ●● ●
●

●

●●
●

● ●
●

●● ● ●● ● ●

●

●● ●●● ●● ● ●●
●

●

●

●
●● ● ●● ●

●
● ●●

●
●

● ●● ● ●
●

● ●●● ●● ●●● ● ●● ●
●●

●
●

●

●

●●● ●

●
●

● ●● ●●● ● ●
●

●
●●

●

●
●

● ● ●● ●●

●

● ●●
●

●● ●

●

●● ●●●●
●

●●

●

● ● ● ●● ●
●

● ● ● ●●● ● ●● ●

●

● ● ●

●
●

● ●●●

●

●

●

●●●
●

● ●

●

●● ●● ●
●

● ●
●●

●●
●

●●●
●

●
●
● ● ●

●
●

●

● ● ●●●
●

●●

●

●●
●

● ●
●

● ● ● ●●●

●

● ●

●
●

●● ●● ●
●

● ●
●●

●● ● ●● ●●●

●

●● ●●

●

●●
●●

●
●

● ● ●
●

●
●

●

● ●
●

●

●

●

●
●

● ●●
●

● ● ● ●● ●

●

●●
●

●
●

● ●
●

●
●

● ●●
● ● ●

●● ●● ● ●

●

●

● ●

●●●● ● ●
●

●

●

●

●

●

●
●●

●
●

●

●● ●

●
●

●●
●

●●
●

●

●

●
●

●● ●●

●

●
●●

●● ● ●

●
●

● ●
●
● ●

●
●

●
●

● ●●●●●

●

● ●● ●●● ● ●●●
●

●
●

●●
●●

● ● ●●●● ●●
●●●

●

●
●

●●● ● ●● ● ●
●

●
●

● ●●●
●

●
●

●

●
●

● ●
●

●

● ●●● ●
●

● ●
●

●

●● ● ●●

●
●

●
●

● ● ●
● ● ●

●● ● ●●● ●
●

● ●
●

●

●

●● ●●●● ● ● ● ●● ●●●
●

●
●

●

●

●● ● ●●● ●
●

● ●●●●
●

●
●

●

● ●●
●

●
●

● ●
●

●● ●● ●●● ●● ●
●● ● ●

● ●
●

●
● ●

●●● ●

●

●● ● ●
●

● ●

●
●

●
● ●●

●●

●

●
●

●●
●

●

●● ●● ●

●

●

●
●

● ●● ●● ●
●

● ●● ●●
●

●
● ●●

●●●

●

●
●●

●
●

●●

●
●

●
●

●
●

●
●

● ● ●●

●

●
●

●

●

●
●

●●● ●

●
●●

●●
● ●

●

●

●

●●● ● ●●
● ●

●

●●● ●

●

●● ● ●●● ● ●● ●
●●●

●

● ●

●
● ●
●●●

●
●

●●●●

●

●● ●

●

●
● ●●●

●

●
●

● ●● ●●●
●

●
●●● ●

●

●

●
● ●● ●● ●●

●
●

●
●

●

●● ●

●

● ●

●
●

●● ●● ● ●●● ●

●

● ●

●

●● ● ●● ● ● ●●
●

● ● ●
●

●●

●

● ● ●●

●
●

●
●

● ●●● ●●

●

●●●● ●
● ●

●●● ●

●
● ●

● ●
●

●
●

●

● ●●

●

●●●

●
●

● ●● ●
●

●
●

● ● ●● ●●●
●

●

●

●

●

●●

●

●●
●● ●●

●
●

●
●

●

●

● ●
●

● ●●
●

●

●● ●
●

●● ●●
●

● ●

● ●

● ●
●●

●●
●

●● ●●●● ●●●
●

●

● ●●
●

●●●
●

● ●●●
●●

●
●

●
●

●● ●●

●

● ●
●

● ●● ●●● ●

●

●
●

●
●

● ●

●

●
●

●●

●

● ●● ●
●

●● ●
●

● ●

●

● ●
●

●
●

●

●

●

● ●● ●

●

●●

●

●
●

●

●

●

● ●●
●

●● ● ●●● ●

●

● ●

●

● ●
●

●

●● ●● ●
●

●●

●●
●

●

●

● ●●● ● ● ●● ●●● ●●

●

●
●

●●● ●●● ●●
●

●
●

●

●

●
●

● ●● ●● ●

●

●

●

● ●
●

●

●

●● ● ●●

●

●
● ●

●

●● ●
●

● ●●
●

●●

●

●

●

●● ●● ●

●

●
●●

●

●

●
●●

●
●

●●
●

●

●
● ●●

●
●

● ●

●
●

●

● ●● ●

●

●

●
●

●
●

●● ● ●

●
●

●

●

●

●

●● ●

●

●
●●● ● ●●●● ●●

●
●

●
●

●

●

● ●

● ●

●

●
●

●●

●

● ● ●

●
●

●● ●●
●

●

●

●● ●●
●●

● ●
●

●

●
●

● ● ●●
● ●

●

●

●

● ●● ●● ●● ●
●

● ●●

●

●●● ●

●

● ●●

●

● ●
●

●

●

●●
●

●

●

●● ●
●

● ● ●● ●

●

●● ●●
● ●

● ●
●

●● ●
●

●

●

●

●
●

●●

●

● ● ●●
●● ●
●● ●●●

●
●

●

● ●
●

●
● ●

●
●

● ●
● ●●

●
●

●

● ●●● ●●
●●

●● ●
●

●●
●

●● ● ●● ●●●

●

● ●●●● ● ●
●

●

● ●● ●

●

●
●● ●

●
●● ●●●

●
●● ●

●

●● ●
●

●

●

● ●
●

●●● ●●
●

● ●●

●

●
● ●● ●●● ●● ● ●● ●●● ● ●

●
● ●●● ●

●●

●
●

●

●

●● ●●
●

●

● ● ●● ●
●

●
●

● ●

●

● ●●

●

●●
●

●●
●

● ●

●

●

●

● ●● ● ●●● ●●
●

●

● ●
●

●● ●● ●

●

● ●●
●

● ●
●

●
●

● ● ●●
●
● ●● ● ●●

●

●

●

● ●● ●●●● ●● ●●

●

● ● ●

●
●

●
●

●

●

●●

●

● ●● ● ●● ●
●

●
●

●

●

●
●

●●●
●

●

●

●

●

●

●
●

● ●● ●●
● ● ●

●

●

●

● ● ●● ● ●● ●
●

●●

●

●
●●●

● ●●● ● ●

●

●●
●

● ●

●
● ●

●

●

●
●

●●●
●

● ●●

●

●●
●

●●

●

●
●● ●● ● ●

●

● ●●

●
●

●

●
●

●

●

● ●●
●

●
●

●

● ●

●

●

●
●●

●● ●●●● ●●

●

●

●

●●
●●

●● ●●

●

● ●● ●

●

●
●

●
●
● ●

●

●

● ●
●●

●

●●● ● ●● ●

●

● ●●● ●● ●
●

● ●● ●●● ●●●
●

●
●

●

●

●
●●●

●
●

●
●

●●

●

● ●
●● ●

●

●

●
● ●

●●
●

●

●●
●

●

●
●

● ●●
●

● ●

●

●●
●

●

●
●

●
●

● ● ●
●

● ●● ●●

●
●

●

●

●●● ●

●

●
●

●
●

●●
● ●

● ●● ● ● ●● ●●
● ●

●
●

●
●●

●● ●
●

●● ●● ●●● ● ●●

●

●
● ● ●●

●

● ● ●●● ●● ● ●● ●● ●

●

● ● ●
●

● ●● ● ●●

●

●

●

●●
●●

● ●
●

●

●

●
●
● ●

●

● ● ●
●

●

●

●●

●

●

●

●

●
●

●

●●
●

●

●
●

●

●

●●

●

●●●
●●

●●● ●● ●●

●

● ●● ●
●●●

●
●

●
● ●

● ●
●

● ●● ●
●

●●
●

●
●●

● ●
●

●
●

● ●●● ●
●

●
●

●
● ●

●

●

●
●● ● ●●●

●

●●● ●● ●
●●

●
●

●●
●

●● ●●
●

●

●

●●
●

● ●●
●●

● ● ●

● ●

● ● ● ●●● ●● ●●

●

●

●

●● ● ●● ●

●

●●
●

● ●

●

●
●

●
●

●● ●● ●●●● ● ●

●

● ●●
●

●

●
●

●
●

●

●
●

●
●

● ●

●● ●●● ●
●

●●
●

●● ● ●● ●● ●

●

●● ●
●

●● ●
●

●

●●

●

●
●

●
●

●●●
●● ●

●

● ●

●
●

●● ●●● ●●●●
●

●
●

● ● ●●●
●

●

● ●
●

● ●● ●
●

● ●

●
●

●●
● ●

●● ●
●

●●

●

●

●

●●● ● ●
●

● ●●

●

●

●

●●

●

●
●

●

●

●
●●● ●●

●●
●●

●

●●● ●●

●

●

●

●●
●

●
●

● ●
●

●●● ●

●

●
●

● ●●
● ●●

●

●●
●

● ●
●

●
●

● ●●

●

●● ●● ●

●

● ●
●●

●
●

●●●
●

●●
●

●
● ● ●

●● ●
●

●●●●●●
●

●
●

●
●

●

●●

●●●

●
●

●
●

●●

● ●

●
●

● ●

●

● ●●●

●
●

● ●●
●

●
●

●●
●

●

●● ●● ●
●

● ● ●
●

●
●

● ●●
●

●

●
●●

● ●
●

●
●

●
●

●●●● ● ●● ●● ● ●● ● ●
●

● ●●●
●

●● ●●
●● ●

● ●● ●

●

●● ●●●

●

●● ●

●

● ●
●

●

●

●

●

●●● ●

●

●●
●

● ●●●

●

●
●

●
●

●

●
●

●●

●●
●

● ●
●

● ●

●

●

●

●

●

● ●
●

●● ●

●

●● ●
●

●

●

●
●●

●
●●●

●

●
●● ● ● ●●

●
●

●
●●

●
●

●

●

●

● ● ● ●
●

●

●

●
●

●

●

●
●

●
● ● ●

●● ● ●●
●

●

●

● ●● ●●

●
●

● ● ●

●

●
●

● ●●
●

●

●●

●

●●● ●● ●

●

●● ●
●

● ●

●

●
● ●● ●●● ●●● ●● ●● ●

●

●

●

●●
●

●●
●

●● ●● ● ●●● ● ●● ● ●
●

●●

●

● ●● ●
● ●

● ●
●●

●● ●●●
●

● ●● ●
●

●●●●
●

●●
●

●
●

●●● ●
●

● ●● ●
●

● ●● ●

●
● ●●

●
●

●
●

●

●
●

● ●●
●

● ●● ● ●● ● ●
●

●●
●

●● ●

●

●
● ●●

●

● ● ●●●

●

●
● ●

●●

●

●

● ● ●●
●

●● ●

●

●
● ●

● ●● ●●●

●

●
●

●●

●

●

●
● ●

●
●

●

●

●

●

● ●
●● ●

●
●● ● ●

●●
●

●

●
●
● ●●●●● ●●● ●

●
●

●

●

●
●

●
●

●

●● ●●

●

●● ●●● ●
●

●

●
●

●

●

●● ●

●

● ● ● ●● ●
●

●
●
● ●

●
●

●
●

● ● ●
●

●● ●● ●●●

●

●
●

●
●

●
●

● ● ●●● ●● ●
●

● ●● ●● ●
●

●
●

●
●

●
●

●● ●
●●

●● ●● ● ●●

●

●

●●

● ●

●

● ●

●

● ●
●

● ●

●

●● ●
● ●

●● ●●● ● ●
●

●
●●

● ● ● ●
●●

● ●
●

●●● ● ●●●● ● ●●
●

● ●
●

● ●

●

●●● ●●

●

●
● ●●

●
●● ●

●

●

● ●● ●

●

●

●

● ●

●

●
●●

●
●

●

●

● ●
●

●
●● ●

●
●

●

●●●

●
●

●● ●● ●●●● ●● ●●
●

●

●

● ● ●● ●● ●

●

●
●●

● ●

●
●

●
●● ●
●

●

●

●
●● ● ●●●

●
●●

●
●

●●

●

● ●●●

●

●

● ●

●

● ●
●

● ●●

● ●

●

●

●
● ●

● ●
●

●●

● ●
●

●
●

●

●
●

●

●

●
●

●● ●

●

●
●

●
●

●

●

●●

●

●

●

●●
●

●

● ● ●● ● ●● ●● ●● ●
●●●

●

●

●
● ●● ●● ●●●● ●●

●
● ●●●

● ●

●

●

●

●

●● ●
●

●
●

●
●

●● ●
●

● ● ● ●●●
●

●● ● ●●●
●●

● ● ●
●

● ● ●

●

●
●● ●

●

●

●

●

●
●●

●

●● ●
●

● ●
●

●

●

●● ●●
●

● ●

●
●

●● ●
●

●●
●

● ●● ●

●

●
●

● ●
●

● ●●
●

●

●●● ● ●●●

●

●

●

●● ●●
●●

●

●●● ●● ● ● ●

●

●●● ●● ●
●

●

●● ●● ●● ●

●

●
●●●

● ●
●

●
●●●

●
●

●● ● ●●● ●●●

●●
●

●
●

●

● ●

●

● ●● ●● ●

●

●● ● ●●
●

●
●

●
●

●
●

●● ●●
●

●●●
●

●● ●● ●● ●

●

●
● ● ●●●●

●

●
●

●● ●●● ●

●

●● ●
●

● ●● ●
●

●
● ●

● ●● ●

●

●
●

● ● ●

●

●●
●

●
●

●
●

●

●
●

●

●
●

● ●

●

●

●

● ●

●

● ●●
● ● ●

●● ● ●

●

●●● ● ●
●●

●●
●

●
● ●

●● ●

●
●

●●

●

●

● ●● ●● ● ●● ●● ●
●

●

●

●
● ●●

●
● ●

●
●●● ●●●● ●

●
● ●●● ● ●

●
●● ●●●● ● ●●

●
● ● ●● ●

●
● ●

●●
●

●
●

●

● ●●

●

● ●

●

●

●
●●

●

●

●
●

●
●

●
●

●

●● ●
●

●●
●

●●

●

●
●

● ●● ●

●

● ●● ●
●

●● ●●
●● ●

●●

●

●
●●● ● ●

●
●

●●

●
●

● ●
●

● ● ● ●
●

● ●● ● ● ●●

●

● ●● ●●

●

●●● ● ● ●● ●
●

●

● ●●●● ●●● ●● ●●

●

● ●
●

●●

●

●●

●

●
● ●● ●●

●
● ●

●
●

● ●

●● ●●●

●

●●
●

●
● ●

●● ●

●

● ●● ●
●

●●

●

●
●

● ●●● ●
●

●● ● ●●● ●●
●

● ●
● ●

● ●● ●

●
● ●

●

●

●●
●

● ●● ● ●
●

● ●
● ●

●● ●

●

●
●●

●● ●● ●●

●

● ●●● ● ●
●

●

●
●

●●●

●
●

● ● ●● ●● ●●● ●●
●

●

● ●

● ●● ●●
●

●● ●●

●

●
●●●●● ●● ● ●

●

●

●

●●● ●●
●

●
●

●

●

●
●

● ●

●

● ●
●

●●
●

●●
●

●

●●

●

●
●●

●
●

●

●

●
●●

●●● ●●

●

●
● ●●

●

●

●● ●● ●
●

●●
●●

●● ●●
●

● ●
●

● ●● ●●●● ●● ●● ●●

●

●

●●

● ●●
●

● ● ●● ●
●

●●

●

● ●
●● ● ●

●
●

● ●●● ● ●● ●
●

● ●
●●

● ●●

●

●
●●

●● ● ●
●

●●
●

● ● ●
●●

● ●● ●● ●●
●

● ●

●

● ● ●● ●●
●●

●● ● ●
●

●●

●

●● ●

●

● ●●
●●●

●●
● ●●

●
●

●● ● ● ●● ●●
●●

●●

●

●●●
● ●

● ●●●
●

●

●

●
●

● ●●● ●●●
●

●● ●●

●

● ●
●

●

●

●
●

● ● ●
●

●●● ●●

●

● ● ●● ● ●

●
●

●● ●

●

●
●●

●

● ●
●

●

● ●● ● ●● ●● ●●
●

●● ●

●
●

●

●
●

●

●
● ●

● ●●●
●

●

●

●●
●

●
●

● ●

●●

●
●

● ● ● ●
●

●● ●●
● ●

●
●

● ●● ●●

●

●
●
● ●●● ●●

●

● ● ● ● ●●● ●

●

●

●

●
●●● ● ●● ● ●● ● ●

●●
●

● ●● ● ●● ● ●

●

●

●

●

●
●

● ●

●●

●
●

● ●
●

●
●

●

● ●

●● ●●
● ●

●●●

●

●● ● ● ● ●●●●

●

● ● ●● ●●●●● ●●

●

●●
●
●

●

●●●● ●

●

● ●● ●
●
●●●

●
●

●●

●

● ●
●

●
●

●● ●

●

●●
● ●

●●●
●

●
●

●

● ●
●

●

●●
●

●● ● ●● ●●● ●● ● ●● ●●

●

●

●

●

●

●
●

●

● ●● ● ●●● ●● ●●
●

● ●● ●
●

●

●

●
● ●

●

●●
●●

●

●

●
●●

● ●● ●
●

●● ●
●

●●
●

●●●
●

●
●

●●

●

● ● ●
●

●

●● ●● ●●

●

●
●

●● ●● ●●● ●
●

●●● ●●●

●

● ●

●●

●
●●

●

●●

●

● ●
●

●● ● ●●
●

●
●

● ●●●
●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●
●

●
●

●●
●

● ●
●

●

●●● ●

●

●
● ●●●

●

●
●

●
●

●

●

● ●
●

●

●● ●
●●

●●
●

● ●
●

●
●

●

●●● ●●

●

● ●

●●

● ●●● ●●
●

●

● ●●

●

●
● ●

● ● ●●
●●

● ●
●

●
●

●

● ●●●

●

● ●●
●

●
●

● ●● ● ●●

●

●

●

●
●

●

● ●● ● ●●● ●
●

●
● ●

●
●

● ●●
●

●● ●● ●● ●

●

●
●

●
●

●●
●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●● ●● ●●

●

●

●
●

●● ● ●

●

● ●

●

●

●

●

●

●●●

●

● ● ●●
● ●

●● ●

●

●

●●

● ● ●
●

●
●

●● ●●●●●● ● ●● ●
●

●

●●
●

●

●● ●●● ●●●
●

●

●

●● ●●
●●

●
●

●
●

● ●
● ●

● ●●●

●

●
●

●

●

●

●●● ●● ●●● ● ●
●

●
●

●●●● ●● ●●
●

●

●

●

●

●

● ●

●

●

● ●
●

●● ●● ●● ●● ●● ●

●
●

●● ●● ● ●

●

● ●
● ● ●●

●
●

●

●
●

● ● ●● ●

●

●
●

●

● ● ●● ●

●

● ● ● ●
●

●

●

●
●●

● ●●

●

●●

●

●
● ● ●●

●
●●

●

●
●

●●
●

●

●
●

●
●

● ●●● ● ● ●●

●

●
●

● ●●●●

●

● ● ●
●

●

●
●

●
●●

●

●

● ● ●●
●

● ●● ●●●
●

●●

●

● ●●
●

●

● ●●
●

●
●

● ●
●

●●
●

●● ●● ●● ●
●

● ●

● ●
●

●

●
●

●●
●

●●
●

● ●● ●● ●● ●

●

●

●

●

●

●●

●
●

●
●

●

●●

●● ●
●

●

●
●●

●●● ● ●●
●

●
●

● ● ●

●

● ●

●

●●

●

●

●
●

●

●

●

●
●

● ●●
●

●●
● ●

● ●●●
●

● ●●
●●

●

● ●
●

●

●
●●● ●

●
● ●

●
●

●
●

●●

●
●

● ● ●

●

●

●

●
● ●

●

●

● ●● ●●
●●

●●
●

● ●●●

● ●

●
●

●●
●

●

●●●

●

● ●

●
● ●●

● ●

●

● ●●
●

● ● ●● ●● ● ●●●● ●

●

● ●
● ● ●

●

● ●

●

●
●

● ●● ●●
●

● ●●
●●

● ● ●

● ●

●●
●

●
●

● ●
● ●

●●●

●

●
● ●

●

●
●●

●

● ●● ● ●
●

●
●●

●

●
●

●

●● ●● ●

●

●

●

●●

●

●
●

●●

●

● ●

●

●●
●

●

●

●

●

● ●

●

● ●●
●

● ● ● ●● ●●●
●

● ●
●

●
●●

●

●
● ●

●●

●
●

● ●● ●●● ●●

●

●●●

●

●
●

●●
●

●●●
●

●●
●

●● ● ●● ●

●

●●● ● ●
●

●● ●

●

●
●

●● ●
●

●
●●

● ●

● ●

●●● ●● ●●
●

●

●

●

● ●
●●

●

●
●

● ●● ● ● ●

●

●

●

●

●

● ●●● ● ●● ● ● ●

●

●● ●●

●

●● ●●

●●●

●●
●

●

●

●

●●

●

●●

●
●

● ●●●
● ●●

●● ●●●
●

●●
●● ●

●
● ●

●● ●
●

●●
●

● ●●

●

● ●
●

● ●

●

●

●
●

●
●

●●

●
●

● ●
●

●

●● ●
●

●

● ●
●

● ● ●●
●

●●●

●

● ●●

●

●

●

●●
●

●● ● ●
●

● ● ●
●

● ●
●

●

●

●●●

●

●● ●
●

●
●

●
●

● ●

●

●
● ● ●

●
●●●

●
●

●●
●

● ●●

●

●
● ●

●
● ●

●● ●

●

●
●●

●

● ●
●

●

●

● ●
●

●● ●●●● ●●●●
● ●

● ●
●

●

● ● ●●●
● ●

●● ●
●●

● ●● ●● ● ●● ●
●

●

●

●● ●
●

●
●

●
●

●●●

●

●● ●
●

●

● ●●●●
●

●
●

●

● ●
●

●●

●

●● ●●

●

●

●

●●●●● ● ●●● ●●●

●

●●● ●●

●

●● ●

●

●
●

●

●
●

●●
●

●● ●●●

●

●

●

●
●

●●

●

● ● ●● ● ●
●

●
●

● ●● ●●●
●

●

● ●●
●

●● ● ●● ●●
●

● ●●●●

●

●
●●

●●
● ● ● ●● ●● ●●

● ●
●●●●

●

●●

●

●

●

●

●
● ●● ● ●● ●

●
●

●
● ●

●
● ●

●
●

●

●

●

●
● ●● ●

●
●● ●● ●●

●
●●

●
●●

●● ●
●

●

● ●● ●

●

●
● ●●

●
●

●
●●● ●●

●

●

● ● ●● ●

●

●
●

● ●● ●

●

●●
●

●

●● ●
● ●

●● ●●●● ●●

●

●● ●
●

● ●● ●
●

●●

●

●●

●
●

●● ● ●●
●

●

●● ●● ●● ●

●

●● ● ●● ●
●

●
●

●● ● ●
●

●●●● ●●

●
●

●● ●
●

●●

●

● ●● ● ●●

●

● ● ●●
●

●

●●

●

●

●
●

●
●

●

● ●
●

●●●

●

●

●

● ●●● ●●
●

● ●

●

●
●

●

●
●

●
●

●

● ● ●●
●

●

●
●

●

●

●● ● ●
● ●

●

●● ● ●● ●●● ● ●
●

●
●

● ● ●

●

●

●

● ●● ●
●●● ●

● ●
●

●

●

●●● ●● ●●
●

●

●● ● ●
●

●●● ●
● ●

●● ●●● ●
●

●● ●
●

●●● ●

●
●

● ●●
●

●

●

●

● ●
●

●
●

● ●● ●

●

●
● ●●

●
●● ●

●
●

●
●

●● ●
●●

● ●

●

●●●
●

● ●

●
● ●

●● ●

●

● ●
● ●

●
●

●

●

●

● ●● ●● ●●●
●

● ●
●

●

● ●● ●● ●●
●

● ●● ● ●● ●
●

● ●●
●

●● ●
●

●●
●

●
●

●●● ●
●

●
●

●● ● ● ● ●●

●

● ●
●●

●

●
●

●●
● ● ●

●
●● ●

●●●
●●

●

● ●● ●
●

●
●

●

● ●● ●
●

●●●
●

● ●

●

● ● ●●●
●

●●●
●

●● ●● ●●

●

●● ●●
●

●

●● ● ●

●

●● ●●
●

●●

●

●●● ●●
●

● ●
●

●

●●
●

●

● ●
●

●●

●

● ●●
●

●

●

● ● ●●
●

●
●

●

●●

●

●●

●

●● ●●●● ●●● ●● ● ●● ●

●

●

● ●● ●

●

● ● ●
●●

●

●

●

●

●● ● ●●● ● ●● ● ●●

●

●

●

●● ● ●
● ●

●

●

●
●

●

● ●

●●
●

● ●

●

●

●

●
●●

● ●●
●

● ●● ●
●●

● ●

●
●

●●

●

●
●●

●
●

●

●

●● ●●
● ●

●
●

●
●

● ●
●

●
●

●● ●

●
●

● ●●● ●
●

●●●
●

●

●

●

●

●● ●
●

●

●

●● ● ● ●● ● ●● ●●●
●

●
●●

●● ●
●

●●
●

●

●

●

● ●●

●

●● ●
● ● ●●

●
● ●

●
●●

●
●

●●
●

●
●●

●●
●

● ●●
●

●● ●●

●

●

●

●

●

● ●●● ●●
●

● ● ●●●●
●

●
●● ●●

●● ● ● ●

●

●●● ●● ●
●

●●
●

●●
●

● ●● ●

●

●
●

●

●
●●

●

●● ●● ●●● ●
●

●●

●

● ●
●

● ● ● ● ●●● ●
●

● ●● ●

● ●●

●

●
●●

●

● ● ●● ● ●● ●●●
●

●

●
● ●●

●
●

●

●
●● ●

●

● ●●
●

● ●

●
●

● ●

●

●●
●

● ●● ●
●

●
●●

●● ●● ● ●
●

●

●

●

● ●
●

● ●● ●

●

● ●● ● ●●●

●

●
●●

●
● ●●●

● ●
● ●

●
●

●
●●

●
●●

●
● ●

●

● ●● ●●● ●●●● ●

●

●● ●●● ●●

●

● ●●
●

●

●

●

●
●

●

●●
●

●

●● ●●
●●

● ●● ●● ●●●

●

●

●

● ●●

●

●●
●

●● ●● ●●
●
● ●● ●

●

● ●
●

●

● ●●●
●

●● ●
●

●
●

●
●

●
●

●●●● ●

●

● ●●●
●

●
●

●

●
● ●●●

●
● ● ●● ●

●
●

●

●●

●

● ●● ●

●

●●
●

●
●

● ●● ● ●●

●

● ●

●

● ●

●
●

●
●

● ● ●

●

●

●

●● ●● ● ●

●

●● ●

●

●

●

●

●

●

● ● ●

●

● ●● ●

●

● ●● ●● ● ● ●
●

●

●

●● ●
●

● ● ●
●

●

●●
●

●

●

●●
●●●

●● ● ●●
●

●
●

● ●
●

●

● ●● ● ●● ●
●

●

●
●

●

●

●
●

●
● ●

● ●● ●

●
● ●

●●
●

●● ●● ●● ●● ●
●●

● ●●●
●●

●
●

●
●

●

●
● ●●

●
● ●

● ●●

●

● ●● ●● ●
●

● ● ●

●

●
●

●
●

● ● ●●
● ● ●

●●●

●

● ●
●

●●●
●

●
●

●● ● ●●

●

● ●●

●
●

●
●

●● ●
●

●
●

● ●● ●●●
●

●●● ●●
●

●
●

●● ●● ●●● ●●

●

●●● ● ● ●

●
●

●● ●

●

● ●

●

●●

●
●

●

● ● ● ●●
●●

●
●

●● ●● ●●●

●
●● ●

●

●
● ●

●
● ●

●
●

●
●● ●●

●
●

●

●

●

●●

● ●
●

● ●● ● ● ●
●●

●

●
●

● ● ●●●
●

● ●●●●●
●

●● ●

●

● ●● ●●
●

●● ●

●

●
●

●

●

●

●

●● ●● ●●
●

●●
● ●

●● ● ●●

●

●
●

●
●

● ●
●

●
● ●

●
●

●
● ● ●

●● ● ●●
●

●

● ●●●

●

●
●

●
● ●●

●

● ●●
●

●●

●

●
●● ●● ●● ●●●●

●

●●
●

●● ●

●
●

●● ● ●●

●

●● ● ●
●

●●● ●

●
●

●●

●

● ● ●● ●● ●●

●
●

●● ● ●● ● ●

●

●●
●

●

●

● ●● ● ●●● ●
●

●

●

● ●
●

●
●

● ● ●●
● ●

●
●

●● ●●
●

● ● ●

●

●

●

● ●
●

●

●

●

●
●

●●● ●
●

● ●

●
●

●

●

● ●● ● ●●● ● ●● ●●
● ●

●
●

● ●
●

●●

●

●●● ●● ●●●
●

●

●

●● ●● ●
● ●

●● ●● ● ●● ●● ●●●

●

●●● ●●
●

●● ● ●● ●
●

●

● ●●● ●●
●

●● ● ●●

●

●●
●

●●● ● ● ●●● ●●●● ●
●

● ● ●●

●

●●● ●
●
●

●
● ●

●
●●● ●●● ●

● ●

●

●
●●

●
●

●
●●

●

●

●● ●● ●
● ●

●

●● ●●
●

●

●
●●

●
●

● ●●

●

● ● ●● ●●● ●● ●
●

● ●● ●● ●
●●

●●●
●

●● ● ● ●
●

● ●

●
●

●
●

●● ● ●●

●

●● ●

●

●
●

●

●

● ●●● ●

●

●

●

●
●● ●●

●

●
● ●● ● ●●

●
●●● ●

●
●

● ●
●

● ●● ●
●

● ●

●●
●●

● ●●● ● ●●● ●

●

●

●

● ● ●●

●

●

●

●

● ● ●●

●
●
●●● ●

●

●

●●
● ●● ●●

●

● ●

●
●

●●

●

●

●

●●
●

●
●

●
●

●

●

●
●

●
●

● ●●

●

●
●

●

●
●

●

●●
●

●
●

● ●● ● ● ●●●

●

●● ●● ● ●

●

● ●● ●● ● ●

●

●

●

● ●● ●● ●●● ●
●

●
●

●
● ●

● ●● ● ●
●

●
●

●●

●

●●●
●

● ●
●

● ●

●

● ●●

●

●●
● ●

●

●

●
●●

●
● ●● ●●

●
● ● ●

●

●● ●● ●●
●● ●

●●●

●

●
● ●

●
●●

●
●● ●

●
●

●
●

●

●

● ●● ● ●

●

●

●

● ●
●

●
●

●

●

●

● ●

●●●
●

● ●● ●●
●

●●●● ● ●

●
●

●

●●

●
●

●● ● ● ●●
● ●

●

●●

●●●● ● ● ● ●
●

● ●
●

●
●

● ●
●●

●
●

●
●● ●●

●

● ●

●

●●

●

● ●

●

●● ● ●●● ●
●

●● ●
● ●

●●
●

●●
●

● ● ●●

●

● ●● ●

●

●

●

●
●

●

●

●●
●

●●●

●

● ●●● ●
●

●

●

●
●

●

● ●
●

●
●● ●

● ●
●

● ●
●

●
● ●

●

●● ● ●

●

●

●

● ● ● ● ●

●

●● ●● ●●
●●

●

● ● ●

●

●●
●

●

●

●

● ●
● ●● ●● ●

●
●

●

●

●● ●

●

● ●●
●

● ● ●● ●
●

●

●
●

●
●

● ●● ●

●

●
●

●● ●
●

● ●●
●

●

●
●

●● ● ●●●
●●

●
●

●

●

●

● ●

●

●● ●
● ●

●
●

●

●

●
●

●●●

●

●● ● ●●
●

●

●

●●
●
●

●
●

●●
●

●
●

● ●
●

●● ●● ●
●

●●

●

●●● ●

●

●

●
●

●

●

● ●● ● ● ●● ●
●●

●● ●● ●● ●

●

●
●

●

●●

●

●

●●

●

●●● ●● ●● ●●
●

●

●

●● ●● ●
●

● ●●●●
●

●● ●●●●
●

●
●

●

●

●
●●

●

●● ●●● ●●●

●

● ●

●
●

●

● ●●
●●

●

● ●●● ● ●
● ● ●● ●

●

●●●●

●

●● ●

●
●

●

● ●● ●● ●

●

● ●● ●●
● ●

●

●

●●

●

● ●

●

●● ●●●
●●

● ●● ●● ●●
●

●● ●

●

● ●
●

● ●● ●● ●●
● ●

●

● ● ●●

●

●
●

●

●●●● ●●
●

●
●

● ●

●

●

●
●●

●
●● ●● ● ●

●
●●

●

● ● ●● ●

●

●● ● ●●● ●
●

●

●

●
●

●
●

● ●

●
●

●
●

●
●

●● ● ●● ●● ●● ●
●

●

●

●● ●
●●

● ●● ●● ●● ●

●

● ●

●

● ● ●● ●●

●

●● ● ●●●
● ●

●●● ●
●

●
●

● ●
●

●

●

● ●●
●

●● ●● ●●●● ●●

●

●● ●●
● ●

● ●
●

●
●

● ●●
●

● ●●
●

●●

●
●

●
●

● ●●
●●

●● ●

●

● ●
●

●
●●

●

●

● ●

●
●

●

●● ●
●

●

●
●

●
●

● ● ●●
●

●●●
●

●
●

●

●

●●
●

●

● ●●● ●● ●●● ●●
●

●
● ●

●

● ●● ●●
●

● ● ●
●

●
●

●

●
●

●

●

●

●●●● ●●

●

● ●● ●

●
●

● ●

●
●

● ●

●

●

●
●

●
●

●

●

●●
●

● ● ● ●
●

●● ●

●

●
●

●

●

●

●●● ●●

●

●

●●
●●

● ●
●

● ●●●

●

●
●

●●

●

● ●●● ●

●

●●
●

●
●

●● ● ●●

●

●●
●

● ●●
● ●

●● ● ●
●

● ●●●

●

●● ● ●●
●

●

●

●
●

●
● ●

● ●●
●

●
●

●
●

●
●

● ● ●●●

●

●

●●

●

●● ●● ●
● ●

● ●● ● ●●
●

●

●

●
● ●

●●
● ●

●

● ●

●

● ●● ●●●
●

● ●●
● ●

●●

●

●
●

● ● ●●●● ●

●

●
●●

●

● ●●

●

●
●●● ●●

●

●
●

●

●

● ●●
●

●

●

● ●●● ● ●● ● ●● ●
● ●

●● ●

●

●

● ●
●

●●

●
●

●●●

●

●

●
●

● ● ● ●● ●● ●
●

●●
●

●● ●
●●

●

●

●●

●●
● ●
●●
●

● ●● ●
●

●
●

●

●
●

●
●

●
●

●

● ●● ●
●●

● ● ●● ● ● ●●
● ●

●
●

●

●

●● ●

●

●

●

●●
●

●●

●

●●
●

●

●
●

●● ●● ●● ● ●● ●●

●
●

●● ●●

●

● ● ●

●

●

●●

●

●●● ●● ●●

●

●●●

●

●
●

●
●●●

●
● ●

●

●● ● ●●
●

●●
●

●● ●●

●

●
●

● ●●
● ●

●●● ●● ● ●● ●●● ●●● ●● ●●● ●

●

●● ●● ●●● ●● ●

●

●●
●

● ●● ●●

●
●

● ●
●

●● ● ●● ●

●

●

●
●

●● ●●●●

●

● ●
●

●●
●

●
●

●
●

● ● ●● ●●● ●

●

● ●● ●● ●● ● ●●

●

●● ●● ●●● ●●●
●

●

●
●

● ●●●
●

●
●●

●●
●

●●

●

●
●

●●
●

●●

● ●●● ●

●
●

● ●

●

●●

●

●
●

●●●

●

●● ● ● ●●● ●● ● ●● ●● ●●

●

● ● ●

●

● ● ●●

●

● ●
●

● ●● ●●

●

● ●●
●

● ●
●

●

●

●● ●●
●

●●

●
●●

●●

●
●●

●

●

●

●● ● ●●

●
●

●

●
●●

●

●
●

●● ●● ●
●

●

●

●● ● ● ●

●

●
●

●
●●

●
●

●
●

● ●

●
●

●

●

● ●

●

●●
●

●●● ● ●
●

● ●●● ●
●

● ●
●●

● ●● ●● ●● ●●
●● ●

●
●

●● ● ●●●
●

●

●

●

●● ●
●

● ●
●●

●● ● ●●
●

● ●
●●

●● ● ●

●
●

●
●● ●

● ●● ● ●
●

●

●

●●

●
●

●
●

●

●

● ● ●●● ●
●

●● ●

●

●
● ● ●●● ●● ●

●
●

●●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

● ●●
● ●● ● ●

●

●
●

●● ● ●● ●● ●
●

●
●

● ● ● ●● ●
●

●

●● ●●● ●
●

●
●

● ●
●●

●

●● ●● ● ● ● ●● ●●● ●

●

●● ●
●

●●
●●

●
●

●● ●●● ● ●●

●

●●● ●● ●

●

●●● ●
●

● ●●
●

●

● ●●●
●

●● ●
●

●

●

● ●
● ●●● ●

●

● ● ●
●

●●

●

●● ●
● ●

● ●●

●

● ●

●

●
●

● ●● ●●
●

●
●

●
●

●● ● ●●
●

●●
●

●● ● ● ●● ● ●● ●
●

● ●● ● ●●●

●

● ● ●
●

●

●
●

●

●

●●● ●●●
●

●

●

● ●●

●
●

●

●● ●
●●

●● ●● ●●
● ●

● ●● ●
●

●
●●

●

● ● ● ●● ● ●
●

●● ● ●
●

●● ● ●●
●

●
● ●

● ●●●

●

●
●

● ● ●● ●●

●
●

●

●
● ●

● ● ●● ● ●●
● ●●●

●● ●● ● ●●●
●

● ●● ● ●● ●
●

●●● ● ● ●●
● ●

● ●
●

●●●● ● ● ●●
●

●●● ●

● ●

●●
●

● ●● ● ●●

●
●

●●

●
●

●
●

●

●

●

●

● ●● ●● ●●

●

●●●●●

●

●
●

●
●

●● ●

●

● ●●
●

● ●●● ●
● ● ● ●

●

●
●● ●

●
●

●● ●●
●

●●
●

●
●

● ● ●

●

●
●

● ●

●

●

●
●

●

●

●● ●
● ●

●● ●●
●

●● ●●●
●

● ●
●

●
●

●

●

● ●

●

● ●●● ● ●●●
●

●● ●●●● ●●

●

●●
●

●
●

●

●

● ● ●●●

●

●● ●

●
●

●
●●

●
●

● ●
●

●● ●●

●

●
●● ●●

●
●

●●
●
●

● ●
●

●
●

●

●●

●

●

●

●●
● ●

●
● ●

●● ●
●

● ●● ●● ●
●

●

●

●●● ●
●

●● ● ●●●

●

● ●● ●●●●●●
●

●●
●

●
●

●

●
●● ● ●

● ●
● ●●

●
●

●
●

●

●

● ● ●

●

●
●

●

●
●

● ●●●●
●

●
●

●

● ●● ●● ●
●

●

● ●

●

●

●

●
●● ●

●

● ● ●

●

●

●
●

●

●

● ●
●

●
● ● ●

●
●

●

●

●

●

●
●

●● ●●
●

●

●

●
●

●●

●

●

●

● ●

●

●● ● ●●

●

●●●
●

●
●

●● ● ●●●
● ●

●

●

● ●● ●
●

●
●

●

●● ●●
●

●
●

● ●● ●●●●
●

●
● ●

●

●

●
●●

●

●●
●

● ● ●● ● ●

●
●

●

●

●
●

●●
●

●●● ● ● ●
●●

●

●

●
●

●
● ●

● ● ●● ●

●

●
● ●

●

● ●
●

●
●

● ●● ●● ●
●

●

●

●● ●
●

●

●

●●
●

● ● ●

●

● ● ●● ●● ● ●●
●

●
●

●● ●●
●

●●
●

●

●
●

●
● ● ●

●
●

●

●

●
●

●

●● ●● ●● ●●

●

●
● ●●

●

●●
●

●
●

●
●

●●
●

●

●

●●● ●●● ●
●

●●

●

●
●●

●
●

●
●

●

●

●● ●
●

● ●
●

●●●●
● ●

● ●● ●

●
●●

●

● ●● ● ●● ●●

●

●●●● ●

●

●

●

●
●● ●

●
●

●

● ●●
●

● ●●●
●

●

●●●
●

●
●●

●● ●● ● ●

●

●

●

●

●● ●
● ●

● ●
●

● ●
●

●●● ● ●
●

● ●● ●●●●●

●
●

●

●
●● ●

●

●

●●●
●

●

●

●

●●●● ●●● ● ●
●

●●

●

●● ●

●

●

●
●

●

●
●

●
●

●

● ●
●

●● ●● ●
●

●●●● ● ●
●

●● ●●●
●

●●

● ●

●
●

●●●
●

●

●●
●

●●●
●●

● ●●● ● ●●

●
●

●
●

●●●● ● ●●● ●●
●

●
●

●
●

● ●● ●● ●●
●

●●
●

●

●

●
●

●● ●●●

● ●

●● ●● ●● ●

●
●

● ●●● ● ●

●

●

●

● ●

●
● ●

●●●●● ●
●

● ●● ● ● ●

●

●
●

● ●●● ●
●●

●
●

● ●

● ●● ●● ● ● ●● ●
●●

●● ●●●●●

●

●
●

● ●

●

●●

●

●● ●● ●● ●

●
●

●

●
●

●

● ●

●

●
● ●● ● ●

●

●

●
●

● ●
● ●● ●●●

●
●
● ●●

●●

●

●

●

● ●●●● ●

●
●

● ● ●● ●● ●● ● ●●●● ● ●●
●

● ● ●

●

●
●●

●

●●

●

● ●
●

●

●
●

●

●

●●● ● ●●●●
●

●

●●●
●

●● ●

●

● ●

●

●●
●

●

●

● ●● ●● ●● ●
●

●●

●

●

●

● ●

●

●
●

●● ●
●

●●

●

● ●
●

● ●●

●

●

●●
●

●

●●
● ●

●●
●

●
●

●

●

●

●
●

●

● ●●
●

●

●
●

●● ●

● ●

●
●

●

●● ●● ● ●●

●

●
● ●●

●
●

●
●

● ●

●

●●● ● ●
●

●

●● ●
●

●

●

●

●

●
●

●
●● ●●

●
●●● ●

●

●●
●

●●●

●

●

●
●

●● ● ● ●
●

●

● ●● ●
●● ● ●

●
●

●
●

●● ●

●

● ●
●

● ● ●
●●

●

●

● ●●●

●

●
●

●

●

● ●●
●

● ●● ●●
●

●●
●

●

●● ●●● ● ●
●

●

●●
●

●● ●
●

●● ●●●
●

●

●
●

●●
● ●

● ● ●●

●

●

●
●●

●

● ●●

●

● ●● ●● ●● ●●● ●
●

●●● ●
●

●

●
●

● ●●
●

● ●●
●

● ● ●●
● ●

●
●

● ● ●●●●●

●

●

●

●

●

●

●

●
●

● ● ●● ● ● ● ●● ●

●

●● ● ●

●

● ●●● ● ●●● ●●●

●

●
●

●
● ●

●
●

●

●●
●

● ●●

●●

●●
●●●

● ●●
●●

●● ●
●

● ●

●

●● ●● ●
●

●
●

●

●

● ●● ●● ●● ●● ●

●

●
●

● ●● ●
●

● ●●● ●●●●● ●●

●

●

●

●
●

●

●●
●

● ●●● ●
●●

●● ●
●

●
●

●
●

●
●

●●●
●
● ●●

●

●
● ●●

●
●

●● ● ●
● ●

● ●● ●●●● ●●
●

●●● ●

●
● ●

●
● ●●

●● ●
●

●

●

●● ● ●●●
●

●●
●

● ●● ●
●

●● ● ●
●

●● ●
●

● ●

●

●
●

●●

●

● ● ●●

●

● ● ●● ●●

●

●

● ●●●●

●

●●
● ● ●

●
●

●

●

●
●

● ●

● ●

● ●● ●●

●

●●
●

●
●

●●

●

●
●

●

● ●
●

●

●
●

●
●

●

●

● ●●●
●●

●●● ●●●●

●

●
●

●

● ●
●

●●●● ● ● ●
●

●

●

●● ●●

●

●● ●● ● ●●●● ● ●
● ●

●
●

●

●●●

●

●●

●
●

● ● ●● ●●●●
●

● ● ●●

●

●●● ●
●

●

● ●
●● ●

●
●●●

●

●● ● ●
●●●

● ● ●

●

● ●
●

●

●
●
● ●● ● ●

●●
●●

●

●

●●

●● ●●●
●

● ●●● ●
●

●

●

●

● ●● ● ● ●

●

● ●

●

● ●●
●

● ●● ●● ●●

●

●
●● ●

●●●● ● ●● ●● ●● ● ●● ●
●

● ●

●

● ● ● ●● ●●
●

● ●●●
●

● ●●● ● ●●

●

●● ●

●●

● ● ●● ●● ●●●
●

●●
● ●

●

● ●●● ● ●

●

●
● ● ●

●
●

●
●

● ●● ●●●

●

● ●●
●

●

●

● ● ●● ●● ●
●

●●● ● ●●● ●● ●

●
●

●
● ●● ●

●●

● ●
●

●
●

●● ●● ●●

●
●

●
●

●●
●●

● ●● ● ●●

●

● ●●●
●

●
●

●● ●●● ●
●

● ●● ●●
●

●
●

●

●

●

●●●
●

●●●

●

●●

●
●

●
●

● ●●● ●

●

●●
●

●● ● ●
●

● ●● ●● ● ●● ●
●

●

●

● ●

●

●

●●
●

●●●
●

●●
●

● ●●● ● ● ● ●●
●

● ●

●

●

●● ●●● ●● ●

●

● ●
●

● ●
●

●

●●
●

●
●

●

●● ●●● ● ●
●

●
●

●●● ●●● ●●● ●

●
●

●●

●
●

● ●
●

● ●● ●

●
●

●
● ● ●● ●● ●●

●

● ●●● ●●●
●

●● ●● ●●
●
●

●

● ● ● ●●
●

●

●
●●

●●
●

●● ●● ● ●●●
●

● ● ●● ●

●

●

●

● ●
●●

●
●

●
●●

● ● ●● ●●
●

●

●● ●
●

●
●

● ●
●●

●

●
●●

● ●●● ●● ●
●

● ●● ●
●

●
● ●

● ●

●
●

● ● ●

●

● ●● ● ● ●●● ●
●●

● ●● ●●

●

● ●

●

● ●
●

● ● ●● ●●

●

●

●

● ●●
●

● ●
●

● ● ●● ●● ●●
●

● ● ●●●●●
●●

●
●

●● ●
●

● ●
●

● ●
● ●

●

●

● ●

●

●
● ●●● ●

●
●

● ●● ●

● ●● ●
●

● ●
● ●

● ● ●● ●● ●●

●

● ●●
●

●●

●

●● ●
●●

● ● ●● ●

●

●● ●
●● ●

●

●

●
●

●
● ●

●

●

●● ●●
●

●● ●● ●●

●

●●● ●

●

●

● ●● ●
●

●
●

●● ● ●●●
●●

●
●● ●

●●●
●

●
●

●

●

● ●

●
●

●
●●

●

●●●
●

●
●

●
●

● ●
●

●
●

●
●

●

●● ●● ●●● ●● ●● ●● ●●
●

●● ● ● ●

●
●

● ●●

●
●

●● ●

●

● ●
●

● ●
●●

● ●●●
●

●

●

●

● ● ●● ●

● ●
● ●

● ● ●●

●

●●
●

● ●

●

●●●● ● ●● ●●

●

● ●●

●

● ●● ● ●●

●
●

●
●●

● ● ●
●

●

●

●

●

●● ●●● ● ●● ●
●

●

●●
●
●● ●

●
● ●

●●
●

●
●

●
● ● ●

●
●

●
●●

●
●

●
●

●
●

●●
●● ●

●
●● ● ●

●

●
●

●

●

●

●
●

●● ●
●●

● ●● ●●
●

●
●

●
●

●

●

●● ● ●●●

●

●

●

●

● ● ●●
●

● ●● ●
● ●

●
●

● ●

●

●● ●●● ●
●

●
●

● ● ●●
●

● ●

●

● ● ●●
●

●
●

● ●

●

●

●

●

●
●

●
●

● ●

●

● ●
●●

●
●● ●

●

● ●
●

●● ●
●

●

●

● ●●
●

●● ● ● ●● ●●
●

● ●
●

● ●

●

● ●
●

●

●●●

●● ●● ●
●

●●

● ●

●
●

●

●

●

●

● ●
●

●●●
●

●
●

● ● ●●● ●
●●

● ●
●

●●
●

●

●

●

●

●

●●●● ●●

●

●

●

●
●●

●
●

●
●● ●

●
●

●● ●●

●

●
●

● ● ● ●●
●

●
●●●

●● ●●
●●

●
●

● ●
●

●
●

● ●
●

●

●
●

●● ●
●

● ●● ● ●●

●
●

● ● ●● ●● ●

●

●

●

● ●● ● ●●
●● ●

●
●

●

● ●●● ●

●

●

●

● ● ●●● ● ●●

●

● ●● ●●
●

●

●

●●

●

●
●

●

●

●
●

●
●

● ●
●

●

●
●

●●●●

●

●

●
●

●
●

●●

●● ●● ●
●

●
●

●●
●

●

●
●●

●

● ●

●

●●
●

●●
●

●

●

● ●
● ● ●

●

●●

●

●●
●

●
●

●●●● ●● ● ●●● ●● ●●●●● ●●● ●●
●
●●

●
●

●
●●

● ●●●

●
●

●
●

● ●
●

●
●●

●
● ●●

● ●● ●● ●

●

●●●
●

●●

●

● ●● ●●
●

●

●
●

●

●
●● ●

● ●●● ●
●

●●●● ●●●
●

●
●

●●●●
●●

●

●

● ●

●

●

●

●
●

●

● ●
●

●

●
●

●
●

●

● ●
●

●

●

●
●

● ●● ●●
●

● ●●●
●

●

●●
●

● ●●

●

●●

●

● ●
●●

● ●

●
●

● ● ●

●

●● ●●

●

●
●

●●●
● ●

● ● ●● ●
●

●
●● ●● ● ●● ● ●

●

●
●

● ● ●●● ●

●

● ●●
● ●

●●● ●● ●● ●● ●
●●

●

●

● ●●
●

●
●

●●

●

●
●●

●

●

●

●

●
●

●●
●

●●

●

●● ●● ● ●● ●

●

●
●

●
● ●●

●
● ● ●

●

● ●
●

●

● ● ●● ●● ●●

●

●
●

● ● ●● ●
●

●

●●
●

●
●

●
●

●●
●● ●●

●
●●● ●

●
● ●● ●●● ● ●

●

● ●
●

●● ●●

●
●

●

●
●

●

● ●
●●

●

●● ● ●●
●

●

● ●●

●

● ●●●

●

●
●

●● ●

●●

●●

●

●
● ●● ● ●● ● ●●● ●●

●
● ●● ●

●
●

●

●
● ●

● ●●

●

●
●● ●● ●●

●
●

●

●●●● ●

●
●●

●

●

●
●

● ●● ●●

●

●

●

●

●

● ●●
●●

● ● ●● ●● ●●●●

●

● ●
●

●

●●
●

●

●

●● ●●● ●
● ●

●●
● ●

●●● ●●●

●

●●

●

● ● ● ● ●●●●●
●

●● ●
●

●

●

●
●●

● ● ●

●
●

●●
●

●● ●● ● ●● ● ●● ●
●● ●

●

●

●
●

●

●

● ●●

●

●
●

●●● ●●
●

●
●

● ● ● ●● ● ●● ●
● ●●

● ●● ●
●

●
●

● ●● ●

●

● ●● ●
● ●

● ●
●●

●● ●● ●●
●
●● ●● ● ●

●

●

●

● ●● ●●

●
●

● ●● ●●

●

● ●● ●● ● ●

●

●
●

● ●

●

●● ●●● ●●

● ●

●

●
●

● ● ●
●

● ● ●● ● ●● ●●● ● ● ●
●

●●● ●

●
●

●
●

● ●● ●
●

●●●●

●

●

●
●

●● ●
●

●●● ●●
●

● ●●

●

● ●● ●●● ●

●

●
●

● ●●● ●● ● ●

●

● ●● ● ●● ●
●

● ●● ●● ●● ●
●

● ●●●
●

●●
●

●● ●● ●●

●

● ●●

●

●

● ●● ● ●●

●

●

●
●

●●

●

● ●
●

●●●●

● ●

●

●

●●
● ●

●● ●● ●

●

● ●●●● ●
●

●● ● ● ●●●

●

●●
●

●
●

●
●

● ●●

●

●● ●●●
●

● ●
●

● ● ●
●

●●
●

●

●● ●● ●●

●

● ●● ●● ●●

●
●

● ● ●
●

● ●●●

●

●
● ● ●●●

●

● ● ●● ●

●

●●●
●

● ●● ● ● ● ●● ●●
●

●● ●●
●

● ●●●
●

●● ● ●
●

●● ●●

●

●
●●

●

●
●

●●
●

●●

● ●

●

●

●
● ●

●

●

●

●

● ●●

●

●

●

● ●●
●

●
●

●

● ●●● ● ● ●●●

●
●

●
●

● ● ●●● ●
●

●

●
●

●●

●

●● ●●● ● ● ●
● ●

●

●
●

●

●●● ●
●

● ●
●

● ●
●

●

●●

●

● ● ●●

●

●●

●

● ● ●● ●● ●
●

●● ●

●

● ● ●●
●

●

●
●

● ●
●

●

●

●
● ●

● ●
● ●●

●

● ● ●●● ●● ●●
●

●●

●

●

●

●●
●

●
●● ●●●

●● ● ●●
●

●

●
●

●

●
●

●● ● ●●
●

●● ●
●

●
●

●●
●

● ● ● ●● ●● ●●● ● ●

●

●

●

●●●
●

●

● ●● ●● ●● ●●● ●● ● ●
●

● ●

●
●

●
●

●●● ●● ●

●

●
●

●● ●

● ●

●●●● ●● ●

●

● ●● ●●● ●

●

● ●● ●

●
●

● ●
●

●● ●● ●

●

●
●

●

●●

●●

●

●●
●●

●

●

●●
●

●

●

●● ●

●

●
●

●● ●
● ●

●

●

●●● ●● ●●

●

●● ●● ●● ● ●●
●

●

●

●
●

● ●

●
●

● ● ●●● ●● ●

●
●

●●
●●●

●● ●

●

●

● ●
●

●
● ●

●●●

●

●

●● ●● ●● ●

●

● ●
●

●

●
●●● ●

●

●

● ●

●●● ●● ●● ● ●●●
●

●

●

●

● ●● ●●
●
●●● ● ●●

●
●● ●● ●

●

●

●●●
●

●
● ● ●●

● ●●●
●

●● ●● ●

●●
●

●

● ●
● ●

●
●●

● ●

●

●●

●
●

●
●

●
●

●
●

● ●●
●

●
● ●

●
●

●

●

●

●

●
●

●
●

● ●
●

●

●
●

● ● ●
●

●● ●
●

●

●● ● ●
●

●

●
●

●● ● ●●● ● ● ●● ●● ●●● ●
●

●
●

●

●
●● ●

● ●
●

●
● ●

● ●

●
●

●
●

●●● ●
●

●
●

● ●
●

● ●● ●● ●
●

●
●

● ●● ●
●●

●

● ●●
●

●

●
●

●● ●
●

●● ●

●
●

●
●

●● ●● ●●

●
● ●

●
●

●

●

●●● ●●
●

●
●

● ● ● ●
● ●

● ●●● ●●
●

● ●●

●

●
●

●
●

●●●●

●

● ●●

●

●●

●

●●

●

●

●

● ●● ●●
●

●●●

●
●

●

●
●

●

●

● ●● ●●
●
● ● ● ●

●
●

●
●●●

●
●

●

●

● ●

●

● ●● ●●

●

● ●●
●

●● ●●● ●●● ●● ●
●

●

●

●

●

●
●● ●●●

●

● ●●

●

●●
●

● ●● ● ●
●

●● ●● ● ●●
●

● ●● ●●
●

●●●

●
● ●

●
●

●

●

●●● ● ● ●

●

●

●

●●
●

●
●

●● ●
● ●●

●

● ●

●
●

●

●

● ●●

●

● ●
●
●●●

●
●●

● ●
● ●

●
●

●
●● ●● ● ● ●

●
●●●

●

● ● ●
●

●
●

● ●
●

●

● ●
●

● ● ●● ●

●

●● ●● ● ●
●
●

●●
●

●● ●
●

●

●

●● ● ●● ●●● ●● ●●●
●

●

●

●

●

●●
●

●
●

●
●

●●● ●
●

●
●

● ●

●

● ●

●

●

●

● ● ●
●

●●● ●

●

●●

●

●
●

●
● ● ●● ● ●●

●
●● ●●● ●●● ●

●

●● ●● ●●

●

●● ●●●
●

● ●

●

●
●

● ●
●

● ●● ●● ●
●

● ● ●● ●● ●● ●●● ●●● ●●
●● ●●

●

●

●

●
●

●
●

●
●

●
●

● ● ●● ●●

● ●●

● ●●
●

●●● ●
●●

● ●
●

● ●●

●

●
●

●● ●●

●

●●●
●

●

●

●

●

●

●● ● ●●● ●

●

●● ●●● ●●

●●
●

●

●● ●
●

●

●

●

●● ●

●

●● ●●
●

●●●

●

●
●

● ●●
●

●●

●

●

●

●

●

●● ● ● ● ●
●

●● ●

●

● ●● ●● ●●● ●

●
● ●

● ● ● ● ●●

●

● ●●
●

●● ●● ●● ● ●● ● ●●

●●

●

●
●

● ●●
●

● ●● ●●● ● ●●
●

●

●● ● ● ●●

●

● ● ●●
●

●
●

● ●● ● ● ●●

●

●
● ●

●
●

●

●

●
● ●

●

●

● ●●
●

● ●●
●

●

●

●● ●
●

● ●●
●

● ●● ●●
●

●
●

● ●● ●●●

●

●● ●●●
●

● ●●
● ●●

●●● ●● ●

●

● ●

●

●

●

● ●● ●● ●● ●●● ●
● ●

●● ●
●

●

●
●

●●●
●

●

●● ● ●●

●

● ●● ●

●

● ●●
●

●

●
●● ●

●
●●●

●
●

●
●

●
●●

●

●●●

● ● ●
●

●

●●●
●

●●●
●

●
●

●
●

●

●

● ● ●
●

●

● ● ●●●● ●
●

●●

●

●

●
●

●
●

●

●●

●
●

● ● ●● ●
●

●
●

●● ● ●
●

●● ●
● ●

●●● ●

●
● ●

●

● ●●
●

●

● ●

●
●

●
●

●●●

●

● ●

●

● ●
●

●● ●
●

●

●

●●

●

● ●
● ●

●
●

●
●

● ●●●● ●

●

●
●●● ●●●

●
● ●●

●
●

●● ●●

●

● ● ● ●

●

●
●
●

● ●● ● ●● ●● ● ●
●

●●
●

●

● ● ●
●●

●
●

●● ●●●●●●

●

● ● ●● ●

●

●● ●

●

● ● ●
●

● ●● ●

●
●

●● ●● ●●

●

● ●● ●●

●

●
●

●
●

● ●

●

●
●● ●

●

● ●

●

●●●
● ●

● ●● ●● ●
●

●

●● ●● ● ●

●

●

●
●

●●
●

● ● ●●● ●● ●

● ●

●

●

●

●

●
●● ●● ●

●●
● ●●●

●
●●

●
● ●
●

●
●

●

●● ●● ●●
●

●

●
●

●●
●

● ● ●●●
●

● ●●● ● ●
●

●
●

●
●

● ●● ●
●

●● ●●
●

●
● ●

●● ●
●

● ●● ● ●

●

●
●

●

●

●●●

●

●
●

●
●

● ●

●

●

●

●
● ●●● ●

●

● ●●

●

●●
●

●

●● ● ● ●●

●
●

●● ●

●

●●
●

●●
●

● ● ●
● ●

● ●●●
● ●

●

●
●

●
●● ●

●●
●

●
●

●
●

●
● ●

●

●●●

●

●
●

●● ●

●●

● ● ● ●●● ●
●

●

●
●

●●

●
●

●

●

●● ●● ●

●

●
●

●
●

●● ●● ●●● ●● ●● ●
●

● ● ●●●● ● ●● ●

●

● ●●● ●
●

●●
● ●

● ● ●
● ●

● ●
●

●●
●

●● ●● ● ● ●
●

● ●● ●●
● ●

●
●

●

●

●
●

●
● ●●

●

●

●
●

●● ●●
● ●●

●● ●● ●● ●●●● ● ●●
●●

●●●● ●
●

●
●

● ●● ●● ●●●●

● ●

●● ● ●● ●● ●

●

●
●

● ●
●

●●●
●

●
●●

●

●

●

● ● ● ●● ●● ●●●
●

●
●

●
●

● ●●● ● ●

●

● ● ●●
●● ●

●●●

● ●
●

●

●●●

●

● ●

●

● ●●● ●●

●
●

●

●

● ●● ●

●
●

●
●●

●

●

●
●

●

● ●● ●
● ●

●●● ●●● ●
● ●

●●●●
●

●●
●

●●

●

●

●
●●

●

●

●

●
● ●●
●

●
●

● ●●●●

●

●● ●
●

● ●●●● ●●●
●

●

● ●●●

●

● ●
●

●

●●● ● ●
●

●●●● ●
●

●●● ●
●

● ●
●

●

●
● ● ●

● ●
●

●●
●

● ●
●

●

●

●
● ●

●

●
●

●●● ●

●

●
●●● ● ●● ● ●

●

●

● ●●●

●

●●● ● ●●● ● ●● ● ●
●

● ●● ● ● ●●
●●

● ● ●●

●

●●● ●
●

● ●

●

●
●

●●●●
●

●
● ●●

●● ●● ● ● ●●

●

● ● ●●

●

●
●

●

●
●

●

●

●

●

●● ● ●

●

●

● ●●
●

●●
●● ●●

● ●

●

●

●

● ●
●

●

●● ● ●
●

●

●

●● ● ● ●● ●
●
● ● ●

● ●●

●

● ● ●● ●● ●

●

●● ●
● ●

●● ●
●

●
●

● ●

●

●●

●

●

●

●

●

●
●

● ●● ●
●

● ●●● ● ● ● ●

●

●● ●
●

●●

●

●●

●

●●● ●

●

●●

●

●
●

●

●

●

●●●●
●

●

●
● ●●● ●● ● ●●

●
● ●●

●
● ●

●
●

●

● ●
●

●

●

●● ●●
●

● ●
●

● ● ●● ●
●

●● ● ●

●

● ● ●●● ●

●
●

● ●●
●

●

●

●
●

●

● ● ● ●
●

● ●● ● ●

●

●● ●

●

●● ●●
●

● ●●● ●
●●●

●
●

●

● ●
●

●
●

●● ●● ●

●

● ●
● ●● ● ●● ●●● ● ●● ●●

●

●●● ●

●

●

●

● ●●● ●●

●
●

● ●● ●
●

●●● ●● ●●● ●● ●●
●●

● ●
●

●

●

●
●

●

●

●

●

●●

●●

●●

●●

● ●● ● ●

●

●

●●● ●
●●

●● ●
● ●●●

● ● ●

●

●●

●

●●

●

●

●
●

●
●

●

●

●

●●●●● ● ● ●

●
●

●
●

● ●● ●

●

●
●

● ●●● ●●
●

● ● ●●

●

●● ●

● ● ●

●● ●●

●

●●
●

●●

●

●

●

●●

●

● ●
●

●●●
●

●● ●
●

●● ●
●

●
●

● ● ● ●●
●

● ●●● ●●
●

●
●

●● ● ●●

●

● ● ●●

●
●

●●●

●

●
●

●● ● ●●
●

● ● ●● ●● ●● ●● ●● ● ● ●
●

● ●

●

●● ●
●

●
●

●
●

●
● ●

●

●

● ●
●

●

●

● ●

●

●●
● ● ●

● ●
●

●
●

●●

●

● ●● ●●● ●●● ●● ●● ●●

●

● ●● ●● ● ●● ●● ●● ●

●

●
●

●
●

● ● ●● ●
●

●●
●

●
● ● ●

●●

●

● ●
●

● ●
●

●
●●

● ●

●

●● ●
●

●

●●● ● ●●

●

●● ● ● ●●●
●

●●

●

●● ●

●

● ●●

●

● ●●●
●

●

●

●●
●●

●

●

●

●

●

●
●

● ● ●●● ● ●

●

●
●

●●

●

●●● ● ● ●●
●

●● ●

●

●● ● ●
●

●

●
●

●

● ●
●

●
●

● ● ● ●
●

●

●

●
● ●

●

●
● ●

●
●●

●

●●
●

●●

●

●

●● ● ●
●

●● ●

●

●
●

● ●● ●●●● ● ●● ●
●
●●●

●
●●

●
●

●

●
●

● ●
●●

●
●

●

●

● ●

●

●

●● ●

●

●
●

● ● ●●●
●

● ●●

●

●

●
●

● ●●

●

●
●

●
●

●

●
●

● ●●

●

● ●●
● ●

●

●
●

●●

●

● ●●

● ●

● ● ●
●

● ● ●

●

●
●

●● ● ● ●●
●

●
●

●
● ●●

●● ●● ● ●●
●

●●

●●

●● ●

●

●
● ●

●

●

●

●● ● ●

●

●

●

●
●

●

●●
●

●

●

●●
●
●● ● ●

●

●
●

● ● ● ●● ●● ●● ●● ●● ●● ● ● ●● ● ●
●●

●● ●●

●
●●

●
●

●

●●

● ●
●

● ● ●● ●

●●

●●●

●

●

●

● ●
● ●

● ● ●●●
●

●

●
●

● ●●●●

●
●

● ●

●

● ●
●

●
●

●●
●

●
●

●

●

●

●
●

● ●
●●● ● ●●

●

●● ●●● ●
●

●

●
● ●

●
●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●●● ●

●
●

●

●

●
●

● ●● ●● ●● ● ●● ● ●●●

●

● ●●

●

●
●

● ● ●●

● ●

●● ●●● ●●
● ●

●
●

●
● ●

●
●●●

●
●●●

●

●
●

●
●

●●
●● ● ●

●

● ●●● ●●●●

●

●
● ●

●●
●

●

●

● ●
●

●

●

●
●

●

●● ●●●
●

●

●●●

●

●● ● ●● ●●
●

● ●●
●

●

●●● ●●●● ●

●

● ●●
●

● ●

●

● ●●
●

●

●

●

●
●

● ●●●●●●
●

●

●
●

● ●
●

● ●● ● ● ●● ● ●●●
●

●● ●
●

●● ●

●
●

●
●

●

● ●

●●
●

●
●
●

●
●● ●●

●
●

●
● ●

●
●

●● ● ● ●●
●

● ●● ●● ●●

●

● ●● ●● ● ● ●

●

●● ●
●

●
●

● ●● ● ●● ●●
●

●● ●●

●

●●

●

● ●●●

●
●

●● ●●
●

●

●
● ● ●

●● ●●● ●●● ● ●●
●

●

●

● ● ●● ●
●

●
●

● ●● ● ●
●

●● ●●
● ●

●●
●

●● ●● ●●

●

●
●

●
●

●

● ●● ●● ● ●●●
●

●● ●●

●

● ● ●
●

●
●

●● ● ●● ●●

●

● ●

●

●

●

●
●

●
●

●

● ●● ● ● ●

●

●●
●

●●
●

●●

●

● ●● ●●● ●
●●

●● ●
●

●●

●

●●●
●

●● ●●

●

●

●

●●● ●

●

●●● ●●
●●

●● ●● ●
●

●
●

●
●

●
●

●● ●
●

●●
●

●
●

●● ●

●

● ●●●

●

● ●● ●
●

●
●

●

● ●●●●
●

●●●
●

●

●

● ●

●

●● ●●● ●●
● ●

●

●

●● ● ●

●

●● ●● ●●
●

● ● ●
●

●●
●

● ●

●
●

●● ●
●

●
●

●
●

●

●

●

● ●●

●

●
●

●

●

●● ●
●

●●
●

●

●

●● ●● ●●

●

● ●● ●
●

●

●

●● ● ●
●

●●
● ●

●
●

●

● ●
●

●●●
●

● ●●●●

●

● ●
●●

●
●

●

●● ●

●

● ●

●

●●●
● ●

●
● ●

●● ●●●
●●

●●

●

●
●

●
● ●

●

● ●● ● ● ●
● ●

● ●● ● ●●●
●

●●●

●

●●

●
●

● ●●●
●

●

●

●

●●
● ●

●●

●●

● ●● ●●●
●

●●●● ● ● ●●
●

● ● ●
●

● ●●
●

●●

●

●
●●

● ●● ●●● ●

●

●●●● ●●●

●

●● ●●● ●● ●
●

●
●

● ● ●
●●

●●
●

●●●
●

●

● ●●
●

●●

●

●
●

●● ●● ●●

●

●
●● ●

●●
●●

●

●● ●

●

●
●● ●● ●

●
● ●● ●

●

●
●

●

●
●

●

●

●

●● ●

●

●●●
●●

●

●

● ●● ●

●

●

●
●

●
●

●●● ● ●●

●

●

●

●
●

● ●●● ●

●

●● ●
●

●
●

●

●
● ● ●

●
●

●
● ●●

●
●●

●

● ● ● ●● ●● ●●
●

●●
●

●● ●●
●

● ● ●●● ●● ●
●

● ●●● ●● ● ●●
●

●●● ●●●●
●

● ●

●

●●●
●

●● ●●●
●

●
●

●
●

● ●●●●●●

●

●●

●

●
●

●● ●●●●

●

●● ● ●●● ●
●

●

● ●
●●

● ●● ●●●
●

● ●●●● ●

●

● ● ●
●

●●●
●

●

●

● ●● ●● ● ●●
●

● ●
●

● ●
●

● ●

● ●● ●● ● ●

●
●

●●

●

● ●● ● ●●● ●

●

●●●● ●●

●

●

●

●● ● ●●● ●

●

●

●

●
●●

●

●

● ●
● ●

●

●
● ●

●● ●● ●

●

●● ●

● ●
●

●●

●

●●●
●

● ●
●

● ● ●
●

●

●
●

●

●

● ●
●● ● ●

●

●

●

● ●● ●
●

●

●

●

●

●●
●●

●
●

●● ●
●

●●● ●
●

●●
● ●

● ●● ●●●
●

●

●
●

● ● ●
●

● ●●●●
●

●

●●● ●

●

●●● ● ●●

●

● ●● ●●●

●
●

● ● ● ●●
●

●●●● ●

●

●
●

● ●● ●● ●●●● ●● ● ●●
●

●

●● ●●

●

● ● ●
●

●●
●

●
●

●● ● ● ●●

●

●●

●

●
● ●

●

●
●

●

● ● ●● ● ● ●●

●

● ●
●

● ●● ●
●

●●●● ● ●●
●
●

●
●

● ●
●

●● ● ●
●

●
●

●

● ●

●

●● ●●●●● ●
●

●●
●●
● ●● ●●

●
●

●

● ●

●●
●

● ● ● ●●●
●

●
●

●
●

●

●

●● ●●
● ●

●●●● ●
● ●

● ●●●●
●

●

● ●● ●

●

●●
●

●
●

●

● ●
●●

●
● ●

●● ● ● ●● ● ●●
●

●●● ●

●

● ●
●

● ●
●

● ●● ●
●

●● ●
●

●

●

● ●
● ●

●●● ●● ●
●

●● ● ●●

●

●●● ●●
●

● ●● ●●● ● ●

● ●
●

●

●

●
●

●

●
● ●

● ●●

●

● ●● ● ●● ● ●● ●● ●
●

●
●

●

●

●

●●
● ●●

●

●
●

● ●●
●

●● ●●
●

● ●● ●
●

●
●

●
●

●
●●

●●
●

●

●

●
●

●

●
●●

● ● ●

●

●

●

●●●
●

● ●● ● ●●

●
●

● ●
●

●● ●●

●

●●●
●

● ●●

●

●●

●

●● ●

●

● ●●

●

●
● ●●● ●●

●

●
●

●
●

●
●

●

●

● ●
●●

●●
●

●

●●

●
●

● ● ● ●●
●●

● ●●
●

● ●●
●

●●

●

● ● ●

●

● ●●● ● ●
●

●
●

●
●

●

●●
●

●
●

●●●● ●

●

●●

●

●●

●

●●

●

● ●

●

● ●●●● ●

●

●
● ●

●
●

●

●
●

● ● ●
●

●
●

●

●

●●

●

●● ●● ● ●

●

●
●●

●
●●

● ●

●

● ●● ● ●

●

●
●

●●
●

● ● ●

●

●●●●
●

●

● ●●● ●
●

● ● ● ● ●● ●●
●

●
●

●● ● ● ●●
● ●

●

●●●

●

● ●●● ●

●●

● ●●

●

●
●

● ● ●
●

●● ● ●●● ●●● ●●
●

●

●
●●

●

●
● ●

●
●

●
●
●●●● ● ●● ●●●

●

●

●

●

●

●
●

●
●●●

●
● ●● ●

●
●

●
●

● ●
● ●● ●● ● ●● ●●●

●

● ● ● ●●
●

●

●● ●
●

● ●
●

●● ●
●

●
●

●
●

●●
●

●●
● ●

●

●

●

●

●●●● ●
●●

●●

●

●
●●●

●

●
●

●

●

●
● ●

●
●

●

●
●

●● ● ●●
●

●●
●

●
●

●●
●

● ●
● ●

●●
●

●

● ●●● ● ●●

●

● ●● ●
●

●
●

● ●

● ●

● ●●● ●

●

●

●
●

●● ● ●● ●●● ● ●● ●● ● ●●
●

●● ●
●●

● ●●
● ●●
● ●●●● ●●

●

●●
●

● ●

●
● ●

●

● ● ● ● ●● ●● ●●

● ●

● ●●
●

●●

●

●●
●

●

● ●●

●

● ●
●

●●●● ●
●●

● ●● ● ●● ● ●●● ● ●● ● ●● ●●

●

●●●
●

●

●

●

● ●●●
●

●
●

●
●

●●

●

● ●
● ●

●●

●

●●● ●

●

● ●●● ●●

●
● ●

●
● ●

●

●

●● ●●●

●
●

● ●● ●
●

●
● ●

●●●

●

● ●●

●

●● ●●●
●

●
●

●

●

● ●● ●●●

●

●
●

●●●
●

●

●●
● ● ●●

●

●●
●

● ●●
●

●●● ●

●

●
●

●

●
●●●●

●
●

●

●● ●●●

●

● ●● ●● ● ●● ●

●

● ●● ● ●

●
●●

● ●●● ●

●

● ●●●
●

●

●●●● ●●

●

● ● ●

●

● ● ●● ●● ● ●
● ●

● ●
●

● ●

●

●

●
● ●

● ●
●

● ● ●●●

●

●

●

●
● ●●

●

●

●
●

●

● ●●
●

●

●●
● ●

●

●●
●●

● ●
●

●
●

●● ●● ●● ● ● ● ●●

●

●

●
●

●● ●● ● ●●

●

●
●

● ●●

●

● ●

●

● ●

●

● ●●● ●●● ●● ● ●●●
● ●

● ●

●

●

●

● ●● ●
●●

● ●● ●● ●●●●
●

●●●

● ●

● ●●● ●
●

● ● ●
●● ●● ●
●●●

●

●

●

● ● ●●

●

● ● ●

●

●

●

●
●● ●●●●● ● ●

●
●

●●

● ●●
●

● ●●

●

●
●

●
●

●
● ●●

●
●●

●
● ●●

●

●
●●

●

●
●

●

●

●● ●● ●● ●

●

● ● ●●● ● ●
●●

● ●●
●

●

●

●

●●

●
●

●
●

●

●●
●

● ●● ●

●

● ● ●
●

●● ●● ● ●
● ●●

● ●

●

●●

●

● ●● ● ● ●

●

● ●
● ●

● ● ●●●
●●

●●
●

●
●

●
●

● ●● ●
●

● ●
●

●

●●
● ● ●

●
● ●

●
●

●
● ●●

●
● ● ●

● ●
●●

●
●●

●
●

● ● ● ●●● ●●● ●
●

●

● ●●●
●

●● ●
●

●●●

●●

● ●●

●
●

●
●

● ●
●

●
● ●

●

●●● ●● ● ●● ●●●● ●

●

●●●

●

● ●
●

●● ● ●

●

●
●●

●
●

●
●● ●●

●
●

●
●

●
●

● ●

●

●

●

●
● ●

●
●● ● ●

●
●

●●●

●

●
●

● ●
● ●

●
●

●

●
●

● ●
●

●●
●●

●

●
●●

● ●

●

●

●
●

● ●●●
●

● ● ● ●●
● ●

●
●

●● ●● ●● ●
●

● ●
●

●

●

●

●●
●● ● ●

● ●
● ●● ● ●

● ●
●

●
● ●●

●
●

● ● ●
●

● ● ●

●

●
●

●
●

●●
●●

●●● ● ●●● ●●●
●

● ●● ●● ●
●

●● ●●
●

●

●
●

●
●

● ●●●

●●

●

●
●

●
●

●● ●●●
●

●●
●

●●
●

●
●

●●●
●

●●● ● ●●
●

●
●●

● ●

●

●
●●

● ●
●

●●
●

● ●● ●
●

● ●●●
● ●

● ● ●●
●

● ●●●●
●

●● ●
●

● ●● ●●● ●● ●●● ● ●

●

●
●

●
●

●●
●●

●
●●● ●●● ●

●

●●●● ●

●

●

● ●
●

●

● ●● ●●● ●●
●

● ●

●

●
●

●

●
●

● ●
●

●
●

● ●

●

●
● ●

●● ●
●

●

●

●● ●

●

● ●● ●

●

●
● ●

●

● ●●●

●

● ●●●●
●

● ●● ●●● ●

●

● ● ●

●

●
● ●

●
●

●

●●● ●●
●

●

●●● ●● ●
● ●

●

●
●

●

● ●
●

●●
●

●

● ● ●
●

●

●
●

●●

●

●
●

●● ●

●

●

●

●

●
●

●● ● ●●●

●

●

●

●
●

●
●

●
●

●●● ● ●

●

●● ●
●

●● ●● ●● ●
●●

●
●

● ●

●
●

●
●●

●●● ●

●

●●●
●

●●
●

●● ●● ●● ●
●●

●●
●

●● ●

●
●

●

●

●●

●

● ●●

●

●
●

●

●● ● ●

●

●

●
●

●

● ● ●● ● ●● ●● ●
●
●

●

● ●●●

●

●●●
●

● ● ●
● ●● ●

●●
●

●
●

● ●●
●

●
●

●
●●

●

●● ●● ●●
●

●
●

●
●

●
●

●
●

●●
●

●
●

● ● ●
● ●

●●

●
●

●
● ●

● ●●●

●
●

● ●●●

●

●● ●
●

● ● ●

●

●
●

● ● ●●●● ●● ●
●

● ●●

●

●
●

●

●

● ●
● ●

●● ●

●

●

● ●●

●

●
●

● ●● ●●
●●

●
●

●● ●● ● ●●
●

●● ●

●

●● ●●● ●
●

● ● ●●

●

●
●

●●
●● ● ●

●

●● ● ●
●

●
●

●●● ●

●●

● ● ●● ●● ●●
●

●●●●●●
●●

● ● ●

●
●

● ●
●

●●●

●

●
●

●
●

●● ●
●

●

●

●

● ●●

●

● ●● ●●●●● ●● ●

●

●
● ●●

●

● ●● ●● ●

●

● ●● ● ●● ● ●

●●

●
●

●● ●
●

●● ●● ●●
●

●
●

●

●

●●
●

●

●

●
●

● ●
●

● ●

●

●● ●●●● ● ●
● ●

●● ●● ●
●

●
●

●

●
●

● ●
●

● ● ●●

●
●

●●
●

●● ●●● ●●●

●
●

●
●

● ●● ● ●
●

●●●
●

●●● ●

●

●● ●●
● ●● ●●

●●

●●

●● ●●● ● ●● ●
●

● ●
●

● ●

●

●

●

● ●
●

●
●●●

● ●

●

●●●

●

●

●

●
●

● ●

●

●

●

● ●
●

●

●

●●● ●

●

●
●

●

●●● ●● ● ●
●

●●
●

●●
●

●
●

●●● ●● ●●●
●●

●●
●

● ● ●

●

●●●
●

●● ●●

●

●● ●● ●●●
●●

●
●

● ●● ● ●●● ● ●●
●

●●● ●●
●

●

●

● ●● ● ●●

●

●
● ●

●

●●●●●

●

●

●

●● ●
●

● ● ●● ●● ●●
●

●
●

●

●● ●
●

●
●

●●● ●
●

● ●
●

●
●

●● ●● ●● ●●
●

●
●

●●
●

●

●

●● ●●
●

●
●

● ●●
●

●●
●●

●● ●

●

● ● ●●●●

●

●●

●

●
●

●

●

●● ●

●

●
●

●

●
●

●● ●

●

●
●

●

●
●

●●● ●
●

● ●● ●● ●

●

●
●

●
●

●● ●

●

●
●

● ●●●
●

●

●● ●
●

● ●●

●

●

●

●

● ●
●

● ●
●

●
●

●●● ● ●
●

●●●●●

●

●

●

●

●

● ●
● ●

● ●● ● ● ●
●

●●
●

●●
●

●
● ●

● ●
●

●

●

●

●

● ●●●● ●●

●

●

●

●
●

●● ●● ●●●
● ● ●

●● ● ● ●

●

● ●●

●

● ●
●

●
●

●●●
●

●

●

● ●
●

●
●

●

●

● ●● ●● ●

●
●

●

●
●

● ●

●

●
●

●
●

●● ●●
●

●● ●

●

●

●

●
●● ● ●

●

●●●
●

●● ●
●

●●
●●

●
●

●

●

●
●

●

●●
●

●

●
●

●●●●
●●

●●● ●
●

●

●

●

●
●● ●● ●●

●
● ●
●

●

●
●

●
●

●●● ●●
●

●● ●●● ●●
●
●●●

●
● ●

●

●● ●
● ●●

● ●
●

●

●

●
●
●● ● ●●●

●
●● ●●●●

●
●

●●

●● ● ● ●● ●●

●
●
● ●● ●● ● ●● ●

●
● ●

● ●
●

●
● ●

●

●● ●● ●● ●

●

●
●● ●

● ●●
●

●

●

●● ● ●●● ●●●
●

●● ● ●● ●●

●

●● ●●
●

●
●

●

●
● ● ● ●

●
●●

●● ● ● ●●
●

● ●

●

●

●●

● ●● ●
●

● ●●
●

●

●
● ●

●
●

●
●

● ●

●

●
●

● ●●

●

●
●

● ●● ● ● ●
●

● ●

●

● ●●

●

● ●●● ●● ●●
●

●

●●

●

●
●

● ●

●

● ●

●

●●
●

●

●●● ●●●

●

●● ●
●

●●●
●

●

● ● ●● ●●● ● ●●
●

●
●●

●

●●
● ●

●● ●● ●

●

●●
● ●●

●

●● ●●
● ●●

●
●

●●
●

● ●
● ●

●● ● ●●●● ● ●● ● ●
●●

● ●● ● ●● ●●●●
●

●● ●● ●●

● ●

●●
●

●●● ● ●●
●

●● ●

●

● ●
●

●

●●
●

●●●● ●

●

●● ●
●

● ● ●

●

● ● ●●●
●

●
●

●

●
●

●
●●

●●● ● ●
●

● ●● ●
●

● ●● ●●

●

●
● ●

●●●●
●

●●
●

● ●●●
●

●
● ●

● ●

●

●

●
●●●

●
●

●● ●●
●

●

●

●●

●

● ●●● ●

●

●●
●

●

●
● ● ●

● ●● ●●
●

● ●● ●●
● ●

●●

●

● ●●

●

● ●

●

●●

●

● ●
●●

● ●●

●

● ●
●

●
●

●
●

●● ●●● ●
●●

● ● ●●● ●● ●●

●

● ● ●

●

●

●
●

●
●

●
●

● ● ● ●

●

●●
●●

●● ●●● ● ●
●

●●

●

●● ● ●● ●

●

●● ●●● ●● ●●●● ●●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●
●

●

●
●

●●● ● ●

●

●

●

● ●●

●

●●
● ●

● ●● ● ●●

●

●
● ●● ● ● ●●●

●
●●

●

●

●
● ●

●●
●

● ●● ●

●
●

●
●

●● ●
●

●

●

●

●●●
●

●●●
●●

●●

● ●

●
●

●
●

●

● ●● ●

●

●
●

●

●●

●
●

●

●

● ● ●
●

● ●●● ●●
●●

●● ●
●

●●●
●

●
●

● ● ● ●●
●

● ●● ●●● ● ● ●●
●

●

●●

●

● ●

●

●●
●

●
● ●●

●
●● ●

● ● ●

●

●

● ●

●
●

● ● ●● ● ●
●

●

●

● ●

● ●

●

●●●● ●● ●●
●

● ●● ●

●

● ●●●● ●●●

●
●

●●

●

●

●

●
●●

●

●●
●

● ●

●

● ●
●● ●

●

●
●●

●

●

● ●●
●

●●

●

●
●

●

●●

● ●

●

●

●●●
●

●●

●

● ●●● ●
●

●
●

●
●

●

●

●

●●
●

●
●

●

●
●● ● ●● ●

●●
●

●●● ●● ●

●

●● ●● ●●

●
●

●

●

● ● ●●

●

● ●● ●● ●●
●

●

●

● ●

●

●
●

● ●●●● ● ●●●●

●

● ●●

●
●

●● ●●

●

● ● ●● ●●
●●●●

● ●● ●● ● ●●● ● ●● ●● ● ●
●

●
● ●

●
●

●●

●

●
●

● ●●● ● ●
●

●●● ● ●●

●
●

● ●●●
●●

●●●●

●

●
● ●●●

●●
●●

●
● ● ●●

●
●

● ●●
●

●

●
●

●●●

●

● ●● ● ●
●

●● ●

●●

● ● ●

●

● ●●
●

● ●

●
●

●● ●

●

●
●

● ●

●

● ●●●● ●●
●● ●

●● ●

●

● ● ●●●
●

● ●●
●

●
●

●● ●
●

●●●●

●

●

● ●● ● ●
●

●
●●

●

●

●
●

●● ●

●

●● ●● ●● ●●
●

● ●
●

● ●●● ●● ●

●

●● ●●●● ●● ● ●● ●

●

● ●

●

●

●

●
●

●
● ●

●
●

●

●●

●
●

●
●

●●● ●
●

●

● ● ●● ●

● ●

●●● ●●

●

● ●
●

● ●● ●●● ● ● ●●
● ●

●

●
●●

●
● ●

●
●

●

● ●● ●
●

●●

●

●●
●

●● ●
●

●

●
●

●●
●

● ●

●

● ●●

●

● ● ● ●●

●

●● ●

●
●

● ●

●

●

●

●

●●

●● ●● ●
●

● ●●
●

●

●

●

●●
●

●● ●● ● ●
●

●● ● ● ●● ●●●
●

●●

●
●

●●
●

●

●●
●

●
●

●● ●●● ●● ●
●

●● ●● ●

●
●

● ●● ●●●
●

● ●

●

●● ●● ●● ●
●

●

● ●

●

●● ●● ●

●

●● ●
●

● ●
●

●●●●●
● ●

● ●● ●●

●

●

●
●

●

●

●
●

● ●
●

●
●

●
●

●●●

●

● ●● ● ●● ●●

●●

●

●

● ●● ●●

●

●
●● ● ●● ●●●

●
●

●
●● ●

●
●●

●
● ●

●
●

●

●
●

●
●

●
●

● ●● ●●

●

● ●●● ● ●● ●
●

●● ●

● ●
●

● ●● ● ●
●●

●

●● ●

●

● ●● ●

●

●

●

●
● ●

● ●● ●

●

●●
●

●● ●

●

●●●● ●●●● ●
●

● ●●● ●
●

●●
●

●

●
● ●●

● ●
●

●
● ●

●
●●

●
●

● ● ●

●

●●●●●
●

●●● ●● ●●
●

●
●

●●

●

●

●

●●
● ●●

●
●

●

●

●●● ●●● ● ● ●

●

●●
●●

●
●●

● ●●
●

●●●
●

●

●

●

●
●

●●

●

● ●● ●
●

● ●● ● ●●●
●

●●● ● ●● ●
●

● ●
●

●
●

●
●

●●● ●

●
●

●
●

●●
●

●

●●

●

●

●

●

●
●●

●

●●

●
●

●●●

●

● ●

●●

●●

●

●

●● ●

●

●

●

●

●

● ●

●

●●
●

●●● ●●●

●●

●● ●
●

●

● ●
●

●
● ● ●●

●

●
● ●● ●●

●
●●

●
● ●●● ● ●

●

● ●●●●

●

●●● ●

●

●
●

●●

●

●
●

●

●●● ●●● ● ● ●
●

●

●

● ●
● ●

● ●●

●

●
●

● ●●●

●

●

●●

●

●
●

● ●

●

●

●

●

●
● ●

●

● ●●
●

●
●

●

●
●

●
●

●

●

● ●●● ● ●●

●

●

●●

●
●●

●

●
●

●

● ●

●●
●

●●

●

●● ●
●

●

●

● ●●●●

●

●● ●●● ● ●● ●● ●●

●

●●
●

●

●

●● ●● ● ●●●●
●

● ●●
●

●
●

●
●

●
●

● ●
● ●

●●●● ● ●●● ● ●

●

●●● ●
●

●● ●●
●

● ● ● ●

●

●

●
●

●

●

● ●●
●

●
● ●

●●
●

●●
●

●● ●●
●

●● ●●

●

● ●

●

●● ● ●
●

●

● ●● ●
●

●● ●
● ●

● ●●
●

●

●
●

●● ●●●
●

● ●●● ●
●

● ●
●●

●

●

● ● ● ●● ●

●

●●● ● ● ● ●●
●

●● ●●
●

●
●

●●● ● ● ●

●
●

●● ●●

●

●●

●

● ●● ●

●
●

●

●

●

●●●

●

● ●●● ●●● ●

●

●
●● ● ●

●
●

●

●

●● ●
●

● ●● ●●

●

●●

●
●

● ●● ●● ● ●● ●

●

● ●●●
●

●

● ●
●

●

●● ●● ●
●

●● ●
●●

●

●
●

●
●● ●

●
● ●●●

●
●

●

●
●

●
●

●● ●● ● ●
●

●

●

●●●

●

●● ●
●

●

●● ●● ● ● ●● ●
●

●● ●

●

● ●
●

●●

●

● ● ●
●

● ● ● ● ●● ● ●●●

●

●
●

●
●

●
●

●
●

● ●

●

● ●
●

●
●

●

●

●● ●● ●
●

●

●
● ●

●
● ●●● ●

●

●

●

● ● ●

●

●

●

●
●

●

●

● ● ●● ●●● ●● ●●

●

●
● ● ●● ●

● ●
●● ●●

●
●● ● ●●

●

●

●

● ●

●

●
●

●

● ●● ●●

●

●
●

● ●

●

●● ●
●

●●

●

●●●●
●

●

●

●

●
●

●●

●

●
●●

●
●

●●
●

●

●

●●
●

●
●●

●
●

●
●

●● ●
●

●● ● ● ●●
●

●
●

● ●
●

●
●

● ● ●●●
●

●

●
●

●

● ●
●

●
● ●

● ● ●●

●

●

●

●
●

●

●
●

● ●
● ●

●●
●

●
●

● ● ●●
●

●

●

●

● ●●

●

●
●

●● ●●● ●●

●

●●

●

●

●
●

●
●

●● ● ●
●

●
●

●

●

● ● ●●
●

●● ●● ●●●
●

●

●

●

●

●●●

●

●●
●

● ●●●

●
●

●●● ● ●●●

●
●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●●●●● ● ●●● ●●
●●

● ● ●●● ● ●
●

●

●●

● ●●

●
●

●● ●●
●

●

●

●
●

●● ● ●
●

●

●

●

●

●
●● ● ●●●● ●●

●

● ● ●● ● ●●● ●

●
●

●●
●

●● ● ●● ●●● ●
●

●
●

● ●● ●

●

● ●

●
●●

●●● ●●● ●●
●

●
●

● ●
●

●●
●

●● ●
●

●

●

● ●●●

●

●

●

●

●

●

● ●●●

●

● ●●●
●

●●●
●●

● ●●●●●
●

● ●
●

●● ●● ●
●

●

●● ● ●
●

●
●
●

●●● ●
●

●

●●●● ●● ●●

●

● ●●● ●●● ●● ●

●
●

●

●
●

●
● ●

●
●

● ●●●●

●
●

●● ● ●●●●

●

●
●

●
●

●● ●●

●

● ● ● ●
●

●
●

● ● ●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●● ●

●

●
●

●

● ● ●● ●●
●

● ● ●

●

●

●

● ●
●

●

●

●●● ●
● ●

●

● ●
●

●● ●●
● ●

●● ● ●
●

● ● ●●

●●

●

●●● ● ●● ●●
●

● ●
●

●

●

●

●
●

● ●●● ●●

●

● ●

●

●●● ● ●●●●● ●
●

●

●● ●●●●
●

●

●

●

●
● ●● ●●

●
●

●
●

●

●
●

●
● ●

●

●
●

● ●●
●

●●● ● ●
●

●● ●

●●

●

●

● ●●

●
●

● ●

●●

● ●●
●

●● ●● ●
●

● ●
●

●
●

●
●

●● ●●
● ●

●●

●
●

● ●● ●● ●●

●

●● ● ●

●

●●
●

●
●

● ●● ●● ●●● ●●●●

●

●
●

●

●

●

●

●
●

● ●● ● ●●● ●●● ●● ● ● ● ●●●

●

●
●

●
●

●

●● ● ●

●

● ●
● ●

●
●

●●

●

●●●● ●●

●

●

●

● ●●
●

●● ●●●
●

● ●

●

●●●●

●

●● ● ●
●

●

● ●●

●

●

●

● ●● ●●
● ●

●●●

●

● ●●●
● ●●

●

●●

● ● ●●

●

●● ●● ●

●

●●

●

● ●● ●●
●

●

●

●● ● ●
●

●●● ●

●

● ●

●

●●● ●●
●

●
●

● ●● ●
●

●
●●●

●●● ●
●

●

●●
●

●●
●

●
●

●●

●

● ●●
●

●
●

● ●●● ●●

●

●●
●

●●
●

● ●● ●● ●
●

●
●

●

●

● ●●● ●

●

●

●
●

●

●
●●

● ●●
●

●● ●

●
●●

●

●● ●
●

●

●

●●● ●●

●

●●●● ●●
●
● ●● ●●

●

●
●

●
●

●
●

●● ●● ● ●●● ●
●

●
●
●● ●

●
● ● ● ●

●

●

● ●

● ●● ● ●●

●

●●●● ● ●● ●●

●

●

●

●
●

●
●

● ●●
●

●
●●

●●

●

●

●

●
●

●●● ● ● ●
●

● ● ●
●
● ● ●●●

●

●● ● ●

●

●●

●

●

●
●● ●

●
● ●

●

●

●

●

●● ●
●

●
●

●
● ●● ●

●

●●● ●●
●●●

●●● ●

●

●
●●●

● ● ●
●

●
●

●

● ● ●
●● ●●

● ●● ●● ● ●●● ● ●

●

●

●
●

● ●
●

●
●

●

●

●

●

●●
● ●

● ●

●

●●
●

●●
●

●

●
●

● ●
●

●
●

●● ●● ● ● ●
●

●●
●

● ● ●
●

● ●

●●

●
●

●●●
● ●

●

●

●

●● ●●

●

●
● ●●

●

●
●

● ●
●

●● ●●

●

●

●

● ●●

●

●●

●
●

●

●

● ●●
● ● ●

●●●●

●

● ●

●

●● ●● ●

●
●

●

●
●

●
●

● ●

●

●
●

●● ●
●

●●

●

● ●
● ●

●

●
●

●

●
●●

●

●
●● ● ●● ●●●

●

●

●

●

● ●● ● ●●● ● ● ●● ●●
●

● ● ●●

●

●
● ●

●

●
● ● ●

●
●

●
●

● ●●

●

● ●● ● ●● ●●● ●●

●●

● ●●

●

●●● ● ●

●

●
● ●

●

●

●

● ●
● ●

●

●●
●

●

●

●
●●● ● ● ●● ●● ●

● ●
● ●

●
● ● ●

●

● ●● ●●● ●

●

● ●

●

● ● ● ●

●
●

●● ●● ●●●● ●●●
●

● ●●●
●

●●●
●

●

●

●
●

●
●●

●

●

●●
●●

●●●●● ●● ●
●

● ●●
●

●

●
●

● ●
●

●● ●●● ●● ● ●● ●

●●

● ●● ●●
● ●●

●

●

●
●
●

●

● ●●

●
●
● ●

●●
●●● ●●●●●

● ●
●

●
●● ●

●

●●

●

● ● ●

●

●●● ●

●●

●●●
●

●●
●

●● ●●

●

● ●●

●
●

●

●●● ●● ●

●●
●

●

● ● ● ●●
●

●

●

●

●

●
●

●
●

●

●● ●● ●

●

●
● ●● ●

● ●

●

● ●●
●

● ●
●

●

●
●

●●

●

●●

●

● ●
●

●

●

●

●
●

●●
●

● ● ●

●

●

●

●

●●●

●

●●● ●●● ●

● ●

● ● ●
●

●● ●
●

● ●● ● ●

●

●
●●
● ●●

●
●

●

●●● ● ●

●

●●● ●● ●●●● ●

●

●
●

●
● ●

● ●

●

●
● ●

●● ●● ● ●●● ●

●
●

● ●● ●

●

●●

●

●●●● ●

●

● ●●●

●

●
●●

●● ● ●●● ●●●
●

●
●

●●
● ●●

●●
●

●

●● ●
●

●●● ●
●

●●●

●
●

●● ●

●

●● ●● ● ●●

●

●

●

●●

●

●
●●

●

●

●

● ●

●
●●

●● ● ●● ●
●

●●

●
●

●

● ●

●

●● ●●

●

●
●

●

●

●●● ●

●

●

●

● ●●● ●●● ●● ●●●
●

●
●

●
●

●

● ●
●

●●
●

●●

●

●
●

●
●

●●
●

●

●● ● ●●●●

●

● ●●
●

●

● ●● ●

●●

●
●●

●
●

●● ●

●

● ●●
● ●

●
●

●

●

● ●
●

● ●● ● ●
●

●

●

●
●

● ●●

●

●
●

● ●
●

●● ●

● ● ●
●

●

●

●
●●● ●●

●

● ●●
●

●● ●● ●●
●

●

●

● ●

●

●

●

●●●
●

●●
●

● ●●● ●●● ●● ●
●

● ●●● ● ●
●●

●●●● ● ● ●● ● ●●● ●●
●

●●

●

●
● ●

●
● ●

● ● ●●
●

● ●● ● ●
●

● ● ●●● ●● ●● ● ●● ●
● ●

●
● ●● ●●

● ●

●

●●● ●
●

●●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●●● ●● ●

●
●●● ●●

●

●

●

●
● ●

●

● ●●

● ●

●
●

●
●

●

●●
● ●● ●

●

●

● ●

●

●

●

●●

●

●● ●

●

●
● ●●●

●
●

● ● ●
●

● ●
●

●
●●

●

●●● ●
● ●

●
●

●

●

●
●● ●

●●● ● ●● ●●● ●●

●

●●
●● ●

●
●

●
● ● ●●●● ●● ●●

●●

●
●

● ●

●

● ●
●

●
●

●● ●
●

●

●

●● ●
●

●

●
● ●

● ●● ●● ●
● ●

●
●

● ●

●

●●

●

● ●●●●● ●●

●●

●
● ●

●

● ●● ● ●

●
●

●
●

●
●

●●●
● ●

●● ●

●

● ●
●

● ●● ● ●●
●

●
●

●

●

●

●

● ●●●

●
●

●

●●
●

●
●●

● ● ●
●

● ●

●

● ● ●

●

●
●

● ●●

●

●●● ●● ● ● ●●

●
●

●
●

● ●●
●

●

●
●●

●

●● ●● ●●●●●

●

●● ● ● ● ●●●

●
● ●

● ●● ●
●

● ●● ●

●●

●● ● ●● ●● ●● ●●

●

●

●

●
● ●

●●● ●

●

●
●

●● ●● ●

●
●

●● ●● ● ●
●

●● ● ●●● ● ●● ●●● ●
●

●

●

●
●

● ●●

●

●● ●

●

●● ●●

●

●●●

●●
●

● ●● ●●
●

●

●

●
●

●

●●

●

●
● ●

● ●
●

●●●

●

●
●

●

● ●
●

●● ●
●●

● ●

●

●●●● ● ●●
●

●●

●

●

● ●● ●● ●● ●
●

● ●● ●

●

●
●

● ● ●
●

●
● ●● ●

●

● ●● ● ●●
●

●● ●●● ●● ●
●●

●
● ●
●

●
● ●●● ●●

●

●

● ●

●

●● ●
●● ●

● ●
●

●● ●● ●● ●

●

●

●
● ●●●● ●● ●● ●

●●
●● ●●●

● ●
● ●● ●●

● ●
●●● ●

●
●

●

●
●

●

●●● ● ●●

●

●
●

●
● ●●● ●● ●●

●

●

●

●
●

●

●●●● ●
●

●

●

●● ●● ●

●

●
●

● ●●

●

●
●

●

●

● ● ●

●

● ●●
●

●

● ●●● ●
●

●
●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●●
●

●● ●●●

●

●● ●●●● ●●●● ●
●

●● ●

●

●

●

●

●
●●

●
●

●

●

● ●● ● ●●

●

●
● ●

●● ● ●●
●

● ●● ●●

●
●● ●●

●
●

●●●

●

● ●
●●● ●●● ●● ●

●

●

●
●

●●

●●●● ●●●
●

● ●
●

● ● ●●

●

●●●● ●

●

●● ● ●

●

● ●
● ●
●● ●● ●

●

●●
●

●● ●
● ●

●

●

●

● ●
●

● ●
●

●● ●

●

●● ● ●●

●

●

●
●

●●● ●● ●● ●●● ●●● ●●

●

●
●

●
●

●
●

●
● ●

●

●●●

●

●

●

●

●

●
● ●● ●

●
●●●● ●

●

●● ● ●●●●

●
●

●●● ●
●

●

●●●

●

●● ● ●

●

●
● ●

●● ●

●

●
●

●

●
● ●

● ● ● ●
●

● ●● ●●● ●●● ●●

●

●
● ●

●
●

● ●

●

● ●

●

●●● ●
● ●

●
●

●● ●

●
●

●● ●●●
● ●

●

●● ● ●●● ● ●● ●

●

●●●
●

●● ● ● ● ●

●

●

●

●

●

● ●● ● ●●
●

●

●

●

●●●

●

●
●

● ●

●

●●
●

●●

●

●
●

●

● ●
●

● ●●
●●

● ●●

●

●
●●
●●

●
●

● ●
●

●

●● ●
●●

●●
●

●● ● ●●

● ●
●● ●

●
●

●● ●●● ●●
●

●

● ●● ●● ●
●

●

● ●●

●

●● ● ●

●

●● ●●● ● ●●

●

●

● ●
● ●

●

●

●
●

●
● ●

● ●● ● ●

●

● ●●●
●

●
●

●

●● ●● ●

●

●
●

●

●

●

●

●
● ●● ●

●
●

● ●● ●
●

● ●● ●●

●

●
● ●

●●
● ●

●●

●

●●
●

●● ●
●●●

● ●
●

●●
●

●●●
●

●

●●●
●

● ●● ● ●●● ●
●

●

●

●
●

● ●
●

● ●●
●●

●
●

●● ●

●

●●

●

● ●● ●
● ●

●
●

●●
●

●

●●● ●
● ●

●●

●

●● ●

●

●●●
●

●●●
●

●

●

●

●●
●●

● ● ●
●

●
●

● ● ●● ●●
●

● ●
●

●● ●● ●●

●

●

●

●
●

●
●

●●
●

● ●●●

●

● ● ●● ●● ●● ●● ●● ●●●● ●
●

●

●●

●

●

● ●
●

●

●
●●

●● ●● ●

●

● ● ● ●
● ●

● ● ● ●● ●●● ●
●

●

● ●●
●

● ●● ●● ●● ●●● ●

●

●
●

● ●●
●

●● ●

●

● ●●
●

●
●

●

●

●●

●

●●

●

●
●

●
●

●
●

●●●● ●● ●

●

●● ● ● ●●●

●
●

● ●● ●●● ● ●

●

●● ●● ●●

●●

●● ●
●

●

●

●●

●

●●

●

●

● ●
●

●● ●● ● ●● ●
●

●
● ●

●
●

● ●
●

●●●●

●

● ●
●

●●●

●

●●

●

●
●

● ●● ●● ● ●● ●●

●

●
●● ●● ● ●●●●

●
●

●
●● ●

●

●● ● ●

●

●●
●●

●● ●●●●

●

●

●

●
●

●

● ●
●●

●

●

●
● ●

● ● ●

●
●

●●
●

●

● ●●● ●

●

● ●
●

● ● ●● ●● ● ●●● ● ●
●●

●●● ●●
●

●● ●
●

● ●
●

●●

●

● ●● ● ●● ●●

●

●
●

●
●● ● ●●●

●
● ●●●

●

● ● ●●●
● ● ●

●

● ●

●

●●● ●

●

●●●
●● ●●● ● ●●● ● ● ●●

●
●

●

● ● ●
●

●●

● ●

●

●

●
●

● ●
●

●

●

●

● ●● ●● ●● ● ●●
●

●● ●● ●● ● ●● ●● ●●● ● ●

●

●● ●
●

●

● ● ●● ●●●
●

●●
●

●

● ●●
●●

● ●●●
●

●

● ●
●

●● ●● ●●●

●
●

●● ●
●

●
●

● ● ● ● ●● ●●

●

●● ●

●

●
●●

●
●

● ●

●

●●● ● ●● ● ●
●

●●●
●

● ●
●●●

● ● ●
●

●●
●

●

● ●● ●● ●●
●

● ● ●●
●

●
●

●
●

●

●
●

●
●

● ● ●
● ●

●

●● ●●
●

●
●

● ●
●

●

●● ●

●

●
● ●● ●●●

●

● ●

●

●

●
●

● ●
●

●

●● ●
● ●●

●●

●

●● ●●● ● ●
●

●● ●●
●

●● ●
●

●

●

●
● ●● ●● ●● ●● ● ●●● ●● ●

●
●

●

●
●

●

●

● ●
●

●
●●

●
● ●

●●●●
●● ●●

●

●●● ●●

●

● ●● ● ●●

●

●
●

●● ●● ●● ● ●

●

●●

●

●
●

●
● ● ●

●

●

● ●● ●
●

●

●

● ●●
●

●●●● ●

●
●

● ●
●

● ●
●

●●

●

●● ●●●● ●●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●●
●

● ●
●

●●●● ●
●

●

●

● ●
●

●

●
●

●
●

●● ●●

●

●

● ● ●
●

●
●

●●
●

●

● ●
●

●

●
●

●●
●

●
●

●
●

● ● ●● ●●

●

●

●

●

●

●●●
●

●
●

●●● ●

●

●
●

●

●

●

●● ●●

●

●●
●

●
●

●

●

● ● ● ●●

●
●

●
● ●●

●

●
●

● ●●

●
●

●●● ●● ●●● ● ●

●

●
●

● ● ●●● ●● ●
●

● ●● ●

●
●

●

●

●

●

●

●

● ●●

●

●

● ●● ●
●

●●
●

●

●

●

●

●
●

●●
●

● ●●● ●●

●

● ●● ● ● ●●
●

● ●● ●

●

●
●●●●

●

●●
●

●●
●

● ●●●
●

●

●

●
●

●
●

●

●
●

●

●● ●
●

●
●

●● ●
●●

● ●

●
●

●● ●●● ● ●● ● ●● ●
●

●● ● ●● ●

●

●●
●

●●●● ● ●●● ●
●

●

●
● ●

●● ●
●

●● ● ●●● ● ●● ●

●
●

●
●●●● ●●● ●

● ●●●
● ●● ●

●

●● ●
●

● ●

●

●
● ●
●

●●
● ●

●

● ● ●

●

● ● ●● ●● ●●● ● ●
●●

●

●

●

●
●●

●
●

●
●●

●
● ●● ●

●

●● ● ●

●

●●
●

●●
●

● ●

●

● ●
●●

●● ●●

●

●●● ●●

●

● ●
●

●
●

●
●●

●
●

● ●
● ●

●●

●

●●● ●●●
●

●

●

●●● ● ●● ●●

●

●
●

●●● ●●

●

●●● ●●● ● ●● ● ●
●●

●●● ●
● ●

● ●
●●

●
●

●● ●● ●

● ●●
●

●●

●

● ●

●

●● ● ●
●

●
●

●●
●●

● ●

●

●●●
●

● ● ● ●●

●

●●●●●
●

● ●●● ● ●
●

●
●

● ●● ● ●● ● ●●
●

● ●●
●

●
●

● ●● ●●●● ●● ●
●

●● ●● ●

●

●● ●
●

●

●

●●
●●

● ●
●

●●● ● ●● ●● ●

●

●

●

●●

●

● ●● ●●●
●

●

●
●●

● ●

●
●

●
●

●

●

●

●
●

●● ● ●
●

● ●●

●

●●
●●

● ●
●

●● ●●●

●

●●
●

●
●

● ●
●●

● ●●●
●

●●

●

●
● ●

● ● ●● ●●

●

●●●
●

●●

●

●
●

●

●

●●

●

●●

● ●

●

●

●

●

● ● ● ●

●

●
●●

●●

●

●
●●

●

●● ● ●● ●

●

● ●● ●●

●

●●

●

● ● ●
●

●
●

●
●

●
●

●● ●

●

●● ●
●

● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ● ●●●
●

●

●

● ●●

●

●
●

●
●

●● ●●● ●●● ●

●

● ●
●

●

●

●

●● ● ●● ●● ●●
●

●

●

●

●

●
●

●●
●

● ●
●

●

●

●
●●

●●
● ●● ●●

●
● ●

●
●

●●
●

● ●
●

●●●
● ●

●

●

●

●● ●● ●●● ●
●

●●
●

●

●
●

●

●

●

●●
●

●
●

●

●
●

● ●● ●

●

●●

●

●●

●

●
●

● ●
●●

●●

●

●●
● ●●

● ●

●

● ●

●

●
●

●●● ●●● ● ● ●●

●

●

●
●

● ●● ●
●

● ●●●●
●

●

●

●

●

●

●

●

●

●● ●●●
●

● ●
●

●

●
●

● ●●

●● ●●
●

●
●

●
●

● ● ● ●
●
● ●●● ● ●●● ●●●

●
●

●
● ●

●
●

●●

●

●
●

● ●

●
●●

● ●●● ● ● ●● ● ● ●●● ●
●

● ●●
●

● ●● ●● ●●●● ● ● ●● ●● ●

●

●●
●

●● ●
●

●● ●
●

●● ●

●

●

●

●
●●

●

●

●
● ●●

● ●
●

●
●

● ● ●● ●

●

●●● ●● ●●

●

●
●

●
●

●

●

●
● ● ●

●
● ●

●
●●●

●

●
● ●

●
●

●

●

●
●● ●●● ● ●●● ● ●

●
●

●
●

● ●● ●

●

●
●

●●●
●

● ●

●

●
● ● ●

●
●

●
● ●●● ●● ●● ● ●●

●
● ● ● ●●●●

●

● ●●

●

● ● ●
●●

● ●●● ●●

●
●

● ●●

●

●● ●● ●●
●

●

●
● ●

●● ●● ●● ●
●

●● ●● ● ●
●

● ●●
●●

●

●

●

●
●

●

●

●● ●

●

●●

●

●
●

●

●
●

● ●

●

●●
●

●
●

●
●

● ● ● ●●●
●

●● ●●
● ●●

● ●
●

●● ●●
●

●●
●

●
●
●● ●●●●● ●●

●
●

●

●
● ●

● ●●● ●

●

●

●

●●

●

● ●

●
●

●
●● ●

●
●

●
●

●

●

●
●

●●
● ●● ●

●● ●
●

● ●● ●

●

●●●
●

● ● ●
●●●

●

●

● ●
●

●● ●● ●
●

●
●

●
●

● ●●
●

●●
●

●
●

●● ●
●

● ● ●
●

● ●

●

● ●
●

●

●
●●

●

●●

●

● ●
●

●● ●●● ● ●●

●

●●● ● ● ●●●

●

● ●
●

●

●
●● ●

● ●● ●
●

●

●●

●
●

● ●●●
●

●

●

● ●
●

●
●

●
●

●●
●

●

● ●● ●
●●

● ●
●● ●●

●

●●
●

● ●●● ●

●

●● ●
●

●

●

● ●● ●

●
●●

●

●●●●

●

●●
● ●

●

●

●
●

●

●
●

●

●
●

●

●
●●

●

● ●●
●

●
●

●●
●

●● ●
●

●●● ●● ●

●

●● ●
●

●

●●
●

●

●

● ●●● ●
● ● ●

●

●

● ●●●

●

●
●

●

●

● ●

●

●● ●
●

● ●

●

●

●

●●●

●
● ●

●●
●

●
●

● ●
●

●●● ● ●

●
●

●●●● ●●
●

●●●● ● ●● ●●

●

●

●

●
●●● ●

●●
●

●●
●

●
●●● ●●

●
●

●●

●

●

●

● ●●● ●●● ● ●
●

●●
●

●

●
●

●●

●

●
●

●●

●

●

● ●● ●● ●

●

●●
●

●
●

● ●● ●
●

● ● ●● ●

●
●

● ●
●

●

●

●●
●

●
●

● ● ●●

●

●
●

● ●●
●

●
●

●●

●
●

● ● ●
●

●

●
●● ●

●
● ●● ●●●

● ●
●

●

● ●● ● ●●●●

●

● ●

●

● ●

●

●

●

● ●

●
●

●

●

● ●

●
●

● ● ●● ●

●

●
●●

● ●
●

●

● ● ●● ● ●●

●

● ●
●

●● ● ●
●

●●● ●● ● ●● ● ●●
●

●●
●

●

●
●

●
●

● ●●
●

●

● ●●
●

●
●

● ●

●

●● ●
●

●
●

● ●
●

●●

●

●

●

●

●

●●● ●●● ●●

●

● ● ● ●
●

●

●
●

● ●●● ●●
●

●●●

●●
●●

●
●

●

●

● ●
●

●
●

● ●● ●● ●
● ● ●

●
●

●●● ●●
●

●●● ●●●● ●● ●
●

● ●● ●

●

● ●
●

●● ●
●

●

●

● ●

●
●

●●●

●

●●
●

●● ●
●

● ●● ● ●● ●
●

● ●
●

●● ●

●

●●

●

●● ● ●●●
● ●

●● ●
●

●

●
●

●●● ●●●

●

● ● ●● ●
●

● ●

●

●●●

●

● ●● ●
●

●

● ●

●●

●● ● ●
●

●
●

●
●

●

●
●●

●

●

●

● ●
●

●●
●

● ●● ●●● ●● ●●● ● ●●

●

●●
●

●●● ● ●● ●● ●● ●● ● ●

●

●●
●

● ●●●●● ●●
●

●● ● ●●
●

●●
●

●
●

● ● ●●
●

●● ● ●●●

●
●

● ●

●

●● ● ●
●

●●

●

●
●

● ●● ●● ●● ●
●

●

●

●● ●●● ●●

●

●
●

●●●
●

●●
●

●
● ●

●

●

●● ●● ● ●● ●●●
●

●
●

● ●
●

● ● ●
●

●●
●

●●●

●
●

●
●

●
●● ●● ●

●
●

● ●● ●●
●

●●●●
●

●●
●

●● ● ●

●
●●

●● ●●
● ●

●● ●
●

● ●●● ●● ●●

●

●●●
●

● ●● ●● ●

●
●

● ● ● ●
● ●●

● ●●● ●●

●

●

●●

●

●

●

●
●

●

●

●● ●●

●

●
●

●

●● ●
●

●

● ●●
●

● ●
●●

●
●

●●
●

●● ●

●

●
●

● ●●

●

● ●● ●● ● ●● ● ●

●

● ● ●●●
●

● ●
●

●
●

●

●

●●
●

●● ●●
●

● ● ●

●

●
●

●
●

● ●● ●● ●●●● ●
● ●

●
●

●
●●

●

● ●● ●
●

●

●

● ●
●

●
●

●
●●●

●
●

● ● ●●●
●

● ●

●

●
●

●

●

●

●

●●
● ●●

●●
●● ●

●

●

●

●●● ● ●●

●

●● ●

●

●
●●

● ●●

●

●● ● ●

●
●

●

●

● ●
●●●

●

●●

●

●
●

●

●

●
●

●● ● ●● ●●● ●●
●

●●● ●
●

●

●

●
●

●
●

●

●●
●●

● ●
●

●
●

●
●

●

●
●●

●● ●●
●

●
●● ●

●
●

● ●● ● ●●
●●

● ● ●●●● ●●● ●●● ●

●

●● ●● ● ●
●

●
●

● ●
●

●

●

●
●

● ●●
● ●

●●

●

●

●
●● ●

● ●
●

● ●●

●

●● ●●● ● ●● ●
●

● ●

●

●●●●
●

●●
●

● ●

●

●●●●
●

●
●

●
●●

●● ●
●

● ●●● ●●
●

●●

●

●●●

●

●

●
●

●
● ●

●●
●

●●

●

●

●
●

●
●

●
●

●

●●

●

●●● ● ●
●

●

●

●
● ●

●

●

● ●

●

●
●

● ● ●●
● ●

●● ●●
● ●

● ●●●

●

●●
●

● ●● ● ●

●

● ●● ●
●

●

●

●

●
●●

●● ●●

●

● ●
●

●

●

●
●

●

●

●

● ●
●

● ●

●

●
●● ● ●● ●

●●
● ●

●
●● ●●● ●●● ●

● ●

● ●
●

● ● ●● ●

●

●● ●●

●

●

● ●
●

●
●

● ●●● ● ●●
●

● ●
●

● ●

●
●

●

●

●

●

●

●
●

●● ●●● ● ●
●

●

●

● ●● ●
●●
● ●

●
●●●

●●
●● ●

●●

● ●
●●●

●
● ●

● ●● ●● ●●● ●● ●
●

●● ●

●

● ●●● ●

●
●●

●

●

●

●●● ●●● ● ●

●

●
●

●
●

●
●

● ●●
●●

●
●

● ●● ●● ● ●● ● ●●

●
●

● ●●● ●●●
●●

● ●
● ●●

●● ● ● ●

●

●●
● ●●● ●

●
●● ●● ●● ●

●
● ●● ●● ●

●
●

●

●

●

●

● ●●●● ●●● ●
●

●● ● ●●●
●

●
●

●
●

● ● ●● ●●● ●●● ●● ● ●● ●
●

● ● ●

●

● ● ●●●

●

● ● ●
●

● ● ●● ●●● ● ● ●●
●

●

●
●●

●

●

● ●●
●

●

●

●

●

● ●●
●

●
●

●

●

● ●● ●●● ●●● ●

●

●
●● ● ●●

●

●
● ●

● ●
●●●

●

●

●●● ●● ●●●
●

●

●

●
●

● ●● ●
●

●
●

●
●

● ● ●●● ●●

●

● ● ● ● ●
● ●● ●

●

●

●
●

●

●●

●

●
●

●● ● ●
●

●●
●●

●
●

●●●

●

● ●● ●●

●

●●●●

●

● ●● ● ● ●● ●●

●

●

●

●

● ●● ●
●

●● ●●

●

●●● ●
●

●

●●
●

● ● ●●● ●● ●
●

●● ●
●

●
●

●

●

●

●● ●

●

●
● ●

●

● ●
●

●
●

●● ●●
●

●●

●

●
●

●●●●
●

●●● ●● ●

●

●●●

●
●

●

●
●

●
●

●● ●● ●● ●● ●

●

● ●●

●

● ● ●●
●

●

●

●
●

●
●

● ●

●

●

●

●● ●●
●

●
●

● ●
●●

● ●

●

●
●

● ●● ● ●●
●

● ● ●● ● ●●
●

●
●

●● ●● ●●
●

● ●●

●

●
●

●● ●● ●

●

●
●

●● ●●
●

● ●● ● ●●● ●●● ● ●

●
●

●●● ●
●

● ●●●
●

● ●●
●

● ● ●●
●

●●●
●

● ● ●
●

●●

●

● ●● ●● ●
●

●

●
●

●

●●
●

●● ●

●
●

● ●●
●

●
●

●● ● ●●● ● ●
●

●
●

● ●
●

● ●●●●●
●

● ●

●

● ●●
●

● ●●

●

●
●

● ●●

●

●

●
●

●
●

● ●● ●
●

●● ●●

●

●
●

●●● ●● ●●● ●●
●

● ●● ●

●

●● ● ●●

●

●● ● ●● ● ●● ●

●

● ●
●

●
●

●● ●●

●
● ●●

●

●
●

● ●●●
● ● ●

●

●

●
●

●● ●
●

●●

●
●

●● ●

●

●

●

●
●

● ● ●●
●

● ●●
●

● ●● ●

●

● ●
●

●
●

●●●●● ●
●

●● ●●

●

●
●

●● ●
●

● ●●● ●
●

● ●

●

● ●●
●

● ●●
●

● ● ●

●
●

●●● ●
●

●

●
●

●● ●

●

●

●

●
●

● ●

●

●
●

●●
●

●●
●

●
● ●

●

●

●

●

●
●●● ●

●
●

●
●

●
●
●

●

●

●
●

●
●

●

●
●

●

●●
● ●

●

●●
●

● ●●●● ●

●

● ●●●
●

●
● ●

●● ●

● ●●● ●●

●

● ●

●●

●● ● ●●

●

●●
●

●●● ● ● ● ●● ●
●

●

●

●● ●
●●● ● ●

●

●
●

●
● ●

● ●●● ●
●

●
●●

● ●● ●●● ●● ●
●
●● ●

●

●

●●
●

●

●●
●

● ●
●

●

●
●

● ●

●●

● ● ●●

●

●●
●

●
● ●

●●
●

●

●

●● ●● ●● ●●
●

●
●

●
●

●

●●●
●

●●
●●

●● ●●

●
●

●●● ●● ● ●

●

● ● ●

●

●●
●

●● ● ●● ● ●●
●●

● ●●

●

●
●

●

●● ●

●

●
●

●
●

●● ●● ●● ●

●

● ●●● ●● ●● ●●
●

●
●

● ● ●

●

●
●●

●● ● ●●● ●● ●●● ●●
●

● ●●● ●
●

●

●
●●●● ●●

●

●
●

●

● ●
● ●

●●

●

●●●

●
●

●

●

●

●

●● ●●●● ●

●
●

●

●
● ●●

●

● ●
●

●

●

● ●●
●

●● ● ●
●

● ●● ●

●

●●
●

●
●●

●

●●●
●

●● ●● ●

●

●●
●

● ●●●
●

●● ●●
●

● ●●● ●
●

●

●

●●● ● ●
●

● ● ●

●

●

●
●

● ●● ●●
●●

●

●
●

●● ● ●
●

●

●● ● ●●●
● ● ●●

● ● ●●

●

●

●
●●

●

●

●
●

●

●● ● ●●●
●

● ●● ● ●●
●

●
●

●● ●● ●●● ●●● ● ●
●

●●●
●

●

●

● ●●●● ●●●● ●
●

●

●

● ● ●● ●

●

● ● ● ●●

●

●
●

●● ●

●

●
●

●
● ●●

●

●

●
●

●
●

●
●

● ● ●
●

● ●

● ●

● ● ●●● ●●

●

● ● ●●●

●

● ●● ●●
●

●
●

● ●

●

●
●

●●● ● ●● ●

●

●●● ●
● ●

● ●

●

● ● ●●●
●

●
●

● ●

●

●
●

●

●

●

●

●

●
●

● ●

●● ●

●● ●●●
●

● ● ●
●●

●●

●
●

● ●
●

●●●●

●●

●

●

●
●

●
●

●

●● ●

●

● ●●● ●● ● ●● ●

●

● ● ●● ●

●

●● ●●● ●

●

● ●● ●

●●

●

●

●● ●●
●

● ●● ●● ●
●

●●

●

● ●●

●

● ●
●

●

● ● ●● ●● ●

●
●

●● ●

●

●● ●

●
●

●
●

●● ●●
●

●●●

●
●

●● ● ●●

●

●
●

●

●●
● ●

● ● ● ●

●

●● ●
●

●

●

● ● ●

●

● ●

●

●
● ●●

●

● ● ●● ●●● ●●

● ●

●

●
●

●● ●●

●

●●●

●

●
●

● ● ● ●●
●

●● ●

● ●

●● ●
●

●● ●●●● ● ●●● ●
●

● ●

●

● ●● ●

●

●

●

●

●●

●● ●
●●

● ● ●
●

●● ● ●

●

● ●●
●

●●
●

●●
●

●●
●

●

●

● ●● ● ●●

●

●● ●

●
●

●
●

●● ●●●● ●●

●

●

●

● ●

● ●

●
●

●

●

●● ●
●●

●● ●●●●

●

● ●

●

●●
●●

●

●●
●

● ●●● ●●● ●● ● ●●

●

●●
●●●

●
● ●● ●●●● ● ●●●

●

● ●●
●

●●
●

● ●●
●

●● ●●

●

●● ●●

●

●

●

●●
●

●
●

●
●●

●

●
●●

● ●
● ●

●

●

●

●●
●

● ●●●

●

●●

●

●

●
●

● ●

●

●
●

●

● ●●
●

● ●
●

●

●
●

● ●

●

● ● ●●

●

●●
● ●

●● ●●●
●

● ●

●

●● ●● ●●
● ●

● ●

●

●
●

●● ●

●

●
● ●●

●

● ● ●

●

● ●
●●

●
●

●
●

●● ●

●

●
●

●
●

●

●
●

●

●
●

● ●●

●

●
● ● ●

●●
● ●●● ● ● ●

●
●

● ●● ● ●●
●

●

●

●
●

●● ●●

●

●
●●● ● ●● ●● ● ●

●

●
●

●● ●●
●

●

●

●

● ●

●
●

●●● ●●
●

●
●

●● ●● ●

●

●

●

● ●
●

●
●

●

● ●●

●

● ●● ●● ●● ●

●

●●

●

●
● ●

●● ●● ●●● ●
●

● ●● ●● ●
●

● ●
●●

● ● ● ●● ●
●

●
●

●● ● ●● ●● ●

●●
●

●

●

●
●

●●
●

●

●●

●

●● ● ●

●

●
●

●

●
●

●● ● ●● ●●
●●

●

● ●
●

●●

●

●●

●

● ●●
●

●
●

●●

●
●

●●●
●

●
●

● ●●
●

●

●

●

●
●

●

●
●● ●

●

● ●●

●●

●

● ● ●
●

● ●● ●●●
●

●

● ● ●●● ●● ● ●
●●● ●

● ●● ●
●

● ●
●

●●
●

●●●
●

●

●
● ●

●

●

●
●

●

●●

●
●

●

●

●
●

●

●

●● ●
●

●

● ●●●

●

● ● ●

●

● ●
●●

●

●● ●
●

●●
●

● ●
●

●

●

● ●●
●

●
●

●●
●

●

●

●
● ● ●● ●●● ● ●

●
●

●●● ● ●

●

●● ●
●

● ●● ●

●

●

●

● ●

●

●

●

●
●

●

● ● ●● ●

●

●

●

●
●

● ●

●
●

●

●

●
●

●

●
●

●● ● ●●●
●

●● ●● ● ●● ● ●
●

●
●

● ● ● ●●● ●

●●

●
●

●● ●●
●

● ●
●

● ●●
●

● ● ●●● ●

●
●

● ●

●
●

●● ● ●●
●

●
●●

●
●●

● ●● ●

●

●
●

●
●

●

●●●
●●

● ● ●

●

●● ●

●

●
●

●
●

●
●

●● ●● ●●●

●

● ●
● ●● ●●●

●
●

●

●
● ●● ●

●

● ●● ●

●

● ●
●

●

●

●

●
●

●● ●
●

●
●

● ●●
●

●
●

● ●

●

● ●● ● ●●●
●

●

●

●
●

●
●

●

● ●●

●

●

●●

●

●
●●● ● ●

●
●

●● ●
●●

●●
●

● ●●● ●●●
●

●

●

●
● ●

●●

●

● ●
● ●

●
●

●●● ● ●

●

●● ●●
●

●●●
●

●●

●

●●
●

●
●

●● ● ●●
●

●● ●● ●● ●● ●

●

●●●
●

● ●
● ●

● ●●
●

●●● ●● ●
● ●

● ●● ●● ●● ● ●●

●

●

●

●● ●
●●

●

●

●●●● ●● ●● ● ●● ●
●

●●
●

●
●

● ●●

●

●● ●

●

●

● ●●●●●●● ●● ●
●

● ●
●

●● ● ●
●

●

●●

●

●● ● ● ●
●

● ● ●
●

● ●

●

●●
●

●
●

● ● ●●

●

●●● ●● ● ●
●

● ●● ●● ●
●●

●

●

●
●●●● ● ●●

●
●●● ●

●
●

●●● ●
●

●

●

● ● ●●

●

●

●

●
●

●

●

●

●

●●
● ● ●

● ●
●

● ●

●
●

●
●●●

●

●

●●
●

●
●

●
●

● ●● ● ●● ●
●

● ● ●

●

● ●● ●●
●

●
● ●

● ●
●

● ●
●

●● ●● ●
●

●●●● ●

●

●●● ●

●

●
● ● ● ●

●

● ●●

●

● ●
●

●

●

● ●

●● ●● ●
●

●● ●
●

● ●
●

●● ●

●

●
●

●●

●

● ●
●

●
●

● ●●

●

●●● ●

●

●●

●

● ●● ●

●
●

● ●●
● ●

●
●

●
●

●●

●

●●

●

●
●

● ● ●
●

●

●

●
●●

●

●

●

●● ●

●

● ●● ●
●●

● ●

●

●●●●● ●
●

●●

●
●

●● ● ●
●

●●

●
●

●●

●

●

●

● ● ●●
●

●
●

● ●

●

●●● ●
● ●●

● ●● ●●● ●
●

●

●

●
●●

●
●

●
● ●

●
●● ●●● ●● ●● ●● ●●

●
●

●

●● ●●● ● ●
●

●
●

●
●

● ●

●

● ● ●● ●● ● ●
●

● ●● ●● ●● ●●● ●● ●●● ●● ●
●

●

●

●● ●
●

● ●●

●

● ●● ●● ●

●

● ●●
●●

●

●
●

●●

●

●

●

●

●●
●

●

●

●●
●

●

●

●●
●

●

●● ●●● ●●
●

● ●

●
● ●●

●

●

● ●
●

●

●

● ●● ●●
●

●
●

● ● ●●●

●

●
●

●●

●

● ● ●

●

● ●● ●●

●

●
●●● ●● ●● ●

●

●
●

●● ● ●●●
●

● ●● ●● ●● ●● ●
●

● ●
●●

● ●

●
● ●

● ●● ●● ●● ●●● ●

●

●●

●

● ●●
●

● ●● ●
●

●
●

●

●

●
●

●
●

●●● ● ●●
●

●

●●●● ●● ●
●

●● ● ●
●

●
● ●

● ●●

●
●

●

●●
●

●●●

●

●

●

● ●●
● ●

●●
●

● ●●● ●
● ●

●●●● ● ● ●
●

●● ●

●

● ●● ● ●● ●●

●

●● ●

●

●● ●● ●● ●

●

●
● ●

●

●

● ●
●● ●

●● ● ●● ●● ● ●● ●
●

●
●

●

●
● ●

●

●

●
●

●

● ●● ●

●
●

●
● ●●● ●

●

●
●●

●

●
●

●●
●

●
●

● ●●
●

● ● ●● ●● ●●
●

●

●

●

● ● ●●●● ●

●

● ●

●

●
●● ● ●●●

●

●

●

● ●
●

● ●
●

●●● ● ●

●

●
●

●

● ●

● ●

●● ●●

●●

●
●

●●●

●

● ●● ● ●● ●● ●●● ● ●
●

●
●

●●●
●●

●
●

● ●●

●

●

● ●

●

●
●

●

●●●
●
●●

●

●

●

●

●
●

● ●● ●●
●

● ● ●●●
●●

●

● ●● ●
●

●

●

● ●●● ● ●●●

●

●●

●

●

●
● ●

●
● ●

●
● ●

●
●●

●
●
● ●

●
● ●

●

● ●
●

● ●
●

● ● ● ●
●

● ●
●

●
●

●

●●●

●

●

●

●
●

● ●●● ●●

●

●
●● ●

●
●●

● ●
● ● ● ●●

●

●●
●●

● ● ●●
●

●

●
●

● ●
●

●

●

● ●

●

● ●● ● ●
● ●●

●

●

●● ●

●

● ●●
● ●●

●● ● ● ●

●

●
●

●

●

●
●

●●

●
●

●
●

●

●

●● ●●
●

●
●

●● ●

●

● ●
● ●

●●● ●●●●

●

●● ● ● ●●● ●
●

●●
●

● ● ●●●
●●

●

● ●● ●● ●●

●
●

●

●

●
●

●
●

● ●●●

●

●
●

●

● ●●

●

●
● ●

●

●●
● ●

●

●
●

●● ●●
●

●

●● ●●●●
●●

●

●

●

●

●
●

●●●
●

● ● ●● ● ●●

●

●●

●

●●●
●●

●

●

●● ●

●

●

●

●●
●●●

● ●

●
●

●
●

●

●

●
●

●
●

●
●● ●● ●

●
●

●

●

● ● ●
●●

● ●●● ● ●
●

●

●

● ●●●
●

●
●

●● ●
●

●●●

●
●

●
●●

●●
●

● ●

●

●●
●

●

●

●
●

●
● ●● ●●

●

●
● ● ●

●

●● ● ●●● ● ●●●
●

●

●

●

●

●

●

●
●● ● ●

●

●

● ●

●
●● ●●

●
●

●● ●● ●
● ●

●

●

●

●

●● ●
●

●●● ●● ● ●
● ●

● ● ●●
●

●
●●

●

●● ●●● ● ●● ●● ●● ●●● ●

●
●

●●● ●● ●● ●●● ●● ●

●

●● ●●
●

● ●
●

●

●●
●

● ●●●
●

● ● ●● ●
●

●

●●

●

●● ●
●

●

●●

●

●●●●

●

●●●

●

●
●● ●●

●●
●

●
●

●●

●

●●
● ●

●
●

●

● ●
● ●

● ●
●

● ●●● ●●
●●

●● ●● ●
● ●

●

●

●

●

● ●●

●
●

●

●

●

●

●● ●●

●

●
●

●● ●

●

●
● ●

●

●

●●

●
●●

●
●

●● ● ●

●
●

●● ●●●

●

●●● ●●●

●

●● ●

●

●

96

BIN 0

80

BIN 1

112

BIN 2

88

BIN 3

0

32

64

96

128

160

192

224

0 32 64 96 128 160 192 224 256
Packet Criticality (8b)

P
ac

ke
t D

el
ay

 (
C

yc
le

s)

(a) Hoplite

●

●

●
●

●●
●

●

● ●● ●●
●

●

●

●
●

●
● ●

●●
● ● ●

●
● ●

●
●

●
● ●

● ●

● ●
●

●●

●

●
●●

●● ●● ●● ●● ●● ● ●●●
●

● ●
●

●● ●

●

● ● ●● ●● ●● ●

●

●● ●●

●

●●●●●

●

● ● ●●●

●

● ● ●●● ● ● ●
●

●●
●●

●

● ●●
●

● ● ●●●●● ●
●

●● ●● ●●●
● ●

● ●●●
●

● ● ● ●
●

● ●●● ● ●

●
●

●
●

● ●
●

●●●
●

●

●● ● ●
●

●● ●●● ●
●

●

●

● ● ●● ●
●

●● ● ●● ●● ●●
● ●

●

●●●
●

● ● ●
●

● ●●● ●

●

● ●●
●●

●● ●
●

●● ● ●●● ●
●

●
●

● ●●●● ●●
●

●
●

● ● ●● ●
●

●
● ●●

●
●● ●● ●

●●● ● ●●
●

●

●
●●

●

●

●● ●

●

●●
●

● ●●
●

●

● ●●

●

●● ●● ● ●●
●

●●
●

●● ● ●

●

● ●

●

●● ●

● ●

●● ●

●
●● ●

●● ●● ●●

●

●
●●

●

●

● ●● ●● ●
●

● ●●
●●

●
●

●●●
●

● ●

●
●

●
●●

●

● ● ●● ●●● ● ●● ●●
●

● ●●● ●●●
●

●●● ●●

●

● ●
●

●

●

● ● ●
●●●

●
●●

●
●

●
●

●
●

● ●

●
●

●●
●

●

●●● ● ● ●● ●● ●● ●
●

●

●

●●
●●● ●●●

●

●
●
● ●

●

●
● ●●

●
●●●● ●

●
● ●

●

● ● ●●
●

●

● ●●● ●● ●

●

●
●●

●● ●● ● ● ●

●

●
● ●

●
● ●●● ●●

● ●
● ● ●● ●●● ●● ● ●●

●
●

●● ●●
●

● ●● ●● ●●● ● ●
●

●●

●

●●
● ●

●

●● ●

●

●
●

● ●
●

●
● ● ●● ●● ● ●●

●

●

●
●

●
●

●

●
●

●

●●

● ●●●●

●

●●● ●● ●

●

●●● ● ●●

●

●●●
●

●● ●●
●

● ●● ●

●

●

●●● ●

●

●
● ●

● ●
●

●
● ●

●
●●● ●●

●
●

●
●

●
● ●●●● ●●

●
●●

●
● ●

●
●

●

● ●● ●

●●

●●

●

●●● ●
●● ● ●

●●
●

● ●●● ● ●●●
● ●

● ●● ● ●
●●

● ● ●● ●●

●

●●
● ●●

● ●
●

●● ● ●●

●

●●
●

●

●●●

●

●● ● ●

●
●

●● ●●●●
● ●

●
●● ●●● ●●●

●
●

●●

●
●

●● ● ●● ●●●●
●

● ●● ●
●●

●● ●● ●●●● ●
●

●●● ●● ● ●● ●
●

● ● ●● ● ●●●
●

●
●●

●

●

●
●● ●●● ●● ●● ●● ●●

●
●

●● ● ●
●

●●
●

●

●●

●

● ●

●

●●
● ●●

●

●

●

●

●●

●
●●

●●●

●

●●● ●● ●●

●
●

●● ●●● ● ●
●

●●
● ●●● ●●

●

●●● ● ●

●

●●●● ●
● ●

● ●
●● ●

●●
● ●● ●

●

●

●

● ●
●

● ●●● ● ●● ●
●

●●
●

● ●●● ●●

●

● ●●

●

●●
● ● ●

● ●● ● ● ●●
●

●●
●

●

●●

●
●

●
●

●
●●

● ●

●
● ●● ●

●

●

● ●●● ●● ● ●●● ●●● ● ● ● ●● ●● ● ●●● ●● ● ●

●

●●

●

●● ● ● ●●

●
●

●
●● ●● ●●

●
●● ● ● ●●

●

●●● ●
●

● ●●●● ●
●

● ●●● ●● ● ●
●

●
●

● ●●●

●

●● ●●

●

● ●

●
●● ●

● ●
●

●

●
●

●
●

●

●

●

● ●

●●
●

●
●●●

●

●
●

●

●● ●
●●

●

● ●

●

● ●●● ●●●
●● ●● ●● ●●
●

● ●● ●●●

●

● ● ●● ●●
●

● ●
●

●

● ●●

●

●
●

●

●

●
● ●

●

●
● ●●

●

●●
●●●

●
●

●

●

●●
● ●

● ●●● ●

●

●
●●

●

●
●

● ●
●

●●
●

●

●

● ●● ●● ●●● ●

●

● ●
●

●

●

●● ●● ●● ●
●

●
●● ●● ●

●

● ● ●●

●

●● ● ●

●

● ●
●
●

●
●

● ● ●● ●● ●

●

●● ●
●

●● ●

●

●●
●

●
● ●

●
●

● ●●● ●●

●

●●
●●● ●●●

●

● ●
●● ●●●

●
● ●● ●

●

●

●
●

●● ●●
●●

●●
●

●● ●● ● ●● ●● ● ●
● ●

●● ●

●

●
●

●●●
●

● ● ● ●
●

● ● ●●
●

●
●● ●● ●

●

●

●
●

● ●
●

● ●●

●

●
●

●
●

●

● ●
●

●

●

●

●●
●

● ●

●

●
●

●● ●● ● ●●
●

●● ● ●●

●

● ●●
● ●

● ● ●●● ●●
●

●

●

● ●●

●

● ● ● ●● ●● ●● ●

●

●
●

●

●● ●● ●
●

●

●●
●

● ● ●●
● ●

●
●

●
● ●

●
●● ●

●

● ●● ●●● ●
●

●

●

●
●

●

●

● ●

●●
●

●

●

●●

●

● ●● ●●

●

●
●

● ●●●● ●●●

●

● ●●●● ●

●
●

●

●
●

●

●●● ● ● ●● ●
●

●
●

●
●

●● ●●
●

● ●
●●

●
●

● ●

●

●● ●● ●●
● ●

●●

●

●● ●● ●● ●

●

●
●

●

●
● ●

●● ●●● ●
●

●●

●
● ● ● ●●

● ●● ●●●
●

● ● ● ●●

●

●●
●

●● ● ●●● ●
●

●
●● ●

●
●●● ●

●
●●

●

●

●

●

● ●● ●●

●
●

● ● ●
●

●

●
●

●

●

●●
●

●● ● ●
● ●

●●
● ●● ●

●● ●● ●
●

● ●● ●
●

● ●●●

●

●

●

●●● ●● ●● ●

●

●
●

●
●

● ● ●●● ●
●●

●

●
● ●

●● ●● ● ●
●

●●●● ●●
●

●● ●

●

●
●● ●● ● ●

●

●● ●
●

●● ●
●

●●

●● ●
●

●● ●

●

● ●●

●

● ●
●

●
●

●

●
●

●
●

● ●● ●
●

●
●

●
●

●

●
●

●

● ●
●

●

●

● ●

●

●● ●

●

● ● ● ● ●

●
●

● ●● ●
●●

●

● ●● ● ●●●● ● ●●●
● ●

●
●

●●
●

●

●

●
●

● ●● ●●●●
●

● ●● ● ●
●

●

●
●
●● ●●

●

●
● ●

●

●

●●●

●

●
●

●

●

●
● ●

● ●
●

●
●

●

●● ●● ●● ●
●

●

●

●●

●●

●

●

●
●●

●
●

●●

●

●
●

●

●
●

●●● ● ●●● ● ●

●
●

●●● ●●●

●

● ●● ●
●

●
●●

● ●
● ●

●

●

●● ●
●
● ●●● ●●● ●

●

●

●

●●● ● ●●●●●
●

●
●

● ● ●

● ●

●
●

●

●

●●●● ●●● ●● ●●
●

●
●

●●
●

●

●

● ●
● ●

● ●

●

●● ●● ●●

●

● ●● ●●●
●

● ●● ● ●
●

● ●
●

● ●● ● ●
●●

●●● ●● ●●
●● ●● ●●●

●
●●

●
●

●

● ●● ● ●
● ● ●●●

● ●
●●● ●

●

●
●

● ●

●

●●

●

● ●
●●

●●
●

●●●

●

●
●● ●●● ●

●●
● ●●

●

●
●

● ● ●

●

●
● ●

●

●● ● ●●
● ●

●
● ● ●● ●

●
●●● ●●●● ●

●
●

●

●

●

● ●
●

●

● ●● ●●
●

●

● ● ●●
●●

●●
● ●● ●

●
●

●

●

● ●

●

● ● ●

●

●

● ●●
●

●

●

● ●
●●

●
●

●

●

●● ●
●●

●
●

●●● ●● ●
●

●

●●
●● ●

●● ●●
●

●
●

●● ● ● ●
●

●
●

● ● ●
● ●

● ●

●

●

●● ●● ●●

● ●

●●

●

● ●
●

●
●

●

●

●●
●

●● ●●● ●● ●●

●

●●●

●

●

● ● ●● ● ● ●●
● ●

●

●

●●
●

●
●●

● ●

●

● ●

●

●●●●● ● ●●
●

●
●●

●● ● ● ●●
●

● ●

●
●

●

●
●

●
●

●●
●

●●
●

● ●

●

●●

●

● ●

●

● ●
●

●●●
●

● ● ● ●●

●

●
●●

●
●

● ●● ● ●
●

●

●
●●

●

●

●●

●
●

●

●

●

●●
● ●

●● ● ●●

●

●● ●● ● ●
●

●● ● ●

●
●

●

●● ●● ●● ●●
●●

●
● ●●

●

●
●

●●

●●
●

●

●

●
●●

●

●

●●● ● ●

●

● ●
● ● ●●

●
●

●
●

● ●● ●● ●●●

●

● ●●●
●

●●

●

●●●●

●

●

●

● ●
● ● ●

●● ●
● ●

●●●●● ● ●●
●

● ●●

●

●●● ●● ●
●●

●

● ●

●
●

●
●

●● ●●●
●

●

● ●● ●
●● ●● ●

●
●● ●

●
●

●

● ●

●

● ●●● ●● ●
●

●
●

● ● ● ●● ●
●
●

●

●●● ● ●● ●●
●

●● ● ●●●

●

●●
●

●●
●

● ●●

●

● ●● ●● ●● ●
●

●

●

●●

●●●

●●●
●

● ●
●

●

●
●

●

●●

●

● ●●● ● ●
●

● ●

●

●

●
●

● ●
●

●
●

●●

●

● ●● ●● ●
●

● ●
●

●

● ●●

●

●
●● ●●●●

●
●●

●

● ● ●● ●
● ●● ● ●

●●
●

●
●● ●

●

● ● ● ●●●●●

●

●●
● ●

●

●

●

●

●

●

● ●●●● ●●
●

● ●

●

●●

●
●

●●
● ●

● ●●●

●

●
●

●

●

●● ●● ●
●

●● ●●● ●● ●● ●●

●

●●

●

●● ●● ●●
●

●● ● ●● ●●● ●
●● ●● ● ●

●●
●

●

● ●
●

●

●

●
● ●

●● ●
●

●● ●●
●

●

● ●●

● ●

●

●

● ● ●
●

●

●
●

●●●

●

●● ●●● ●●● ●● ●● ● ●

● ●

●
● ●

● ●●● ● ●● ● ● ●●
●

● ●● ● ●● ●
●

●
●

●
●

●●

●
● ● ● ●

●
●

● ●
●●

● ●

●

● ●
●

● ●

●

●

●

●●●

●

●
●

●●

●
●● ●●

●

●
●

●
●

●●● ●●●

● ●
● ●●●

●

●
● ●●● ● ● ●

● ●
●●●●● ●

●
● ●

●●●

●

●

●

●
●

●● ●● ●

●
●●

●
●

●
●●

●
●

● ●
●

●

● ●● ●●●
● ●

●
●

●
●

●

● ●● ●● ●●● ●

●

●● ●● ● ●●
●

●

●

● ●
●

● ● ●

● ●●
●

●● ● ●●● ●● ●●
●

●
●

●● ● ●● ● ●
●

●● ●● ●●●
●

●
●● ● ●

●
●●●

●
● ●

●● ●● ● ●
●

●

●

● ●● ● ● ●●●
●
●

● ● ● ● ●●●● ● ● ●
●

●
● ●● ●●● ● ●●●●

● ●●●● ● ●● ● ●●
●

● ●●● ●

●

●
●

●

●

● ●●●●

●

●

●
●

● ●
●

●
●●

●
● ●●● ●● ● ●

●

●●

●

●

●

●

●

●●
●

● ●

●

●● ●●●●

●

● ●
●

●

●

●●
● ●● ●● ● ●● ●

●

●
●

●● ●●● ●
●

● ● ●●● ● ●●●

●

●
●

●●●●
●

● ●●

●

●●●

●

●
●

●●●
●

●● ●●
●●●
● ● ●● ●

●

● ●
● ● ●

●● ● ● ●● ●●● ● ● ●●●
●

●

●

●●

●

● ●●●●●
●

● ●● ●

●

●

●

● ●● ●

●

●●
●●

●

● ●● ●● ●
●

●

● ●●
●

● ●●
●● ● ●● ● ●●● ●
●

●●● ● ●● ●●●
● ●

●●
● ●

●
● ● ●●●

●●
● ● ●

● ● ●
●

●●

●
● ●

●

● ●
●

●
●

● ●●● ●

●

● ●●

●

● ●●

●

●
●

●

●●

●

●

●

●

●
●●

●
●

●● ● ●

●

●

●

●
●

●

●

●●

●

●●
●

●
●

●

● ●
●

●
●● ●●

●
●

●●●

● ●
● ● ●

●

●●
●

● ●● ●●● ●● ●● ●● ●
●

●

●
●● ● ● ●●

●
●●

●

● ●●
●

●●● ●

●

●

●

● ● ● ●●
●

●

●
●

●● ●● ●● ●● ● ●
●

● ●●

●

●

●●

●

●

●● ● ●●
●

● ●● ●

●

●
●

●●● ● ● ●●
●●

●
●

●

●

● ●●

● ●

●

●

● ●
●

●

●

●
● ●●●

●
● ●● ● ●●●● ● ●● ●●

●
●

●
●

●
● ● ●● ●● ● ●

●
●

●

●

●

●

●
●

●

● ● ●●● ● ● ●●●●

●

●

●

● ●● ●●● ● ●● ●● ●●● ●●
● ●● ●●

●

●● ●
●

●●● ●
●

●

●

●● ●
●

●
●●● ●

●
●

●
●●

●
●

●●
● ● ● ●● ●●

●●

● ●

●

●● ● ●

●

●●●

●

●

●
●● ● ●

●

●
●

●

●

●

● ●
●

●

●

●● ●
●

● ● ●●

●

●
●

● ●

●

● ●●●
●

● ●●

●

●

●

●

●

●● ●●●●

●

● ●●
●

●● ●

●

●
●● ●

●
●

●

●

●

●
●

● ● ●● ● ● ●●● ●● ● ● ●● ●● ●● ●● ● ●
●●

●

●

●●
●● ●

●

●●●● ●
●●

●
●

●●

●

●
●

●

●●

●

●●

●

● ● ●
● ●●

●
●

● ●

●

● ●●
●

●

●

● ●●
●

●● ● ●

●

● ●
●

●
●

●

●

●●●

●

●
● ●

●

●
● ●●

●

●

●

●●● ●●● ● ● ●
●

●

●●
●● ● ●● ●●● ●

●
●●

● ●●

●

●● ●●

●

● ●●

●
●●● ●● ●●

●
●

●●●

● ●
●

● ●

●

●

●

●

●
●

● ●

●●
●

●

●
●

●
●

● ●
●

●
●●

●

● ●
●

● ●
●

●●

●

●
●

●

●●●
●

●
●

●● ●
●
●

●
● ●● ●

●

● ●●●
● ● ●

●● ●● ●●
● ●

● ●●
●

●

● ●●
●● ● ●●●●● ●●● ●●

●●
● ●●●

●
●

●

●● ●

●
●

●

●●●

●

●●
●

● ●
●● ●

●

●●
●

● ●● ●

●
●

●

●

●
●

●● ●●● ● ● ●
●

●●

●

●

●

●

●

●
● ● ●● ●

● ●

●

●

●
●●

●
●●

●
●●● ●

●
●● ●●

●

● ● ●

●

●● ●● ● ●●●
●

●●
●

●

●

●

●
●

● ●● ● ●● ●
●

●

●
●● ● ●●

●

● ●●●
● ●

● ●● ●●● ●● ● ●● ●●
●

● ●
●

●● ●●
●●

●
● ● ●●

● ●
●● ●●● ●●

● ●
●● ●●●

●
●●

●●
● ●● ●● ● ● ● ●● ●● ● ●

●

●
●

● ●● ●●
● ●

● ●

● ●

●

●●
●

●
●

●●

●

●
●●

●

● ●● ● ●
●

●

●

●

●
●

●●
●●

●● ●
●

●

●

● ●
●

●

●

● ●●●
●

●

●

●

●

● ● ●●
●

●

●

●

●
●

●
●● ●●

●

● ●● ●
●

●

●●● ●●●

●

●

●

●●●●
●

● ● ●●● ●●● ●

●

●●● ● ●● ● ●● ●
● ●

● ● ● ●
●

●

●● ● ●
●

●
●

●● ● ● ●
●●

●
●

●

●

●

●

●

●● ● ●● ●●

●

●
●

●●

●
●

● ●

●

●

●

●●

●

●● ● ●● ●●●
●

●

●● ●
●● ●●● ●●●● ● ●● ●● ●

●
●

●

●●●
●

● ●

●

●● ●●

●

● ● ●●● ● ● ●
●● ●●

● ●● ●
●● ●● ● ●●

●

●
●

●
●

●

●

● ● ●●
●

●
●

●
● ●●●

●
● ● ●

●

● ●●● ●●

●●
●

● ●● ●●● ●
●

● ●● ●● ●●●

●

●
●

●
●

●
●

●

●

●●
●

●

●

● ●

●

●● ●● ● ●● ●
●

● ●
●

● ●●
●● ●● ●

●●
●

● ●

●

●●● ●

●

●●● ●

●

●

●●
● ●

●

● ●● ●●●
●

●

●●

●

● ● ●●
●

● ●
● ●

●● ●● ●●● ●● ● ●●
● ●

●
●

●
●

●

●

●

●
●

● ●● ●●●
●

●● ●
●

●
●

●●
●●

●

●

●●
●

●● ●● ●●●
●

●

●

●

●

●● ●● ●
●

●
●

●
● ●

●
●● ●●●● ●●● ●●

●

●●
●

● ●

●

●
●

●

●

●
●

●

● ● ● ●
●

● ●
●

●●
● ●

●

●●
●●

●● ●●

●

●
●

●
●● ●●

●
●

●● ● ●●
●

●

●

●● ●●● ● ●●
●

●● ●●

●
●

●
●

●
●●

●●
●

● ● ●●

●

●

●

● ●
●

●

●●
●● ●

● ●
●

●
●

●

●

●
●

●● ● ●●● ●●●

●

●
●

●
●

● ●●

● ●●
●

●●● ●●

● ●

●● ●

●

●●
●

●● ●●●
●●● ● ●● ● ●● ●●

●
● ●● ●

●
● ●●●

●

●● ●●

●
●

●
● ● ●●

●
●

●
● ●● ●●●

●

●● ●
● ●

●
●

● ●●
●

●

●
● ●

●

●●

●
●

●● ●● ●
● ● ●●●

●
●

●
●

●

●● ●
●●

● ●● ●●

●
● ●

●
●

● ●
●

●

●● ● ●

●● ●
●

●

●

●

●
●●

●
●● ● ●●

●

●

● ● ●● ●

●

●
●

●
●

● ● ●
●

●● ●
●

●

● ●
● ● ●

●●

●

● ● ●

●

●
●

●●
●● ●●

●

●●● ● ●● ●●

●
● ● ●● ●●● ● ●●●● ●● ●

●
●

● ●

● ●●●● ●● ●
●

●

●

● ●
●

●●●
●

●●● ● ●●
●

●

● ●● ● ● ●● ●

● ●
● ●●

●
●●

●●
●●● ●● ●●

●

● ●
●

●

●●

● ●●

●

● ●● ●● ●● ●●
●

● ●●●
●

● ●●●

●

●● ●●
●

● ●● ●●● ● ●●

●

● ●
● ● ● ●● ●● ●●●● ●●

●

● ●● ●● ●● ●●●
● ●

● ●●

●●
● ●●

●

●

●

●

●

● ●

●

●
●

●

●● ● ●●

●

●
● ●●● ●● ● ●●

●
● ●● ●● ●● ●●

●

●

●

●●●
●●

●
●

●

●
●

●●
●●● ● ●

●
● ●●

●
●

● ●●● ●
●

● ●

● ●
● ● ●

●

●● ●
●

●●● ●

●

●

●

● ● ● ●● ●
●
●

●

● ●● ●●● ●
●

●●

●

● ● ●● ● ●●● ●
●

● ●● ● ●●
●

●
●●

●

●
●

●
●

●●
●

● ●
●

●●

●
●

●
●

●

●●●

●
● ●●

●
●

●●
●

●

●
●● ●

●
●●

●●● ●

●

●
●●

●
●

●

●

●●●
●

● ●
● ●●●

●●
●

●

●
●

●●
●

●
●

●

●
●

●
● ●● ●

●

● ●

●
●

●●●●●● ●●●●●●

●

●●

●
●

●
●

●

●

●

●

●

●

● ● ●
●

●

● ●●●

●
●

● ● ●
●

●
● ● ●

● ●●

●

● ●●

●

● ●● ●
●

●
●

●
●

●
●

●

●

●● ● ●
●●●

●

●

●

●

●●●
● ●

●

●

●

●

●●
●

●● ● ●●
●

● ●●

● ●

●
●

●

●

●

●

●
●

●
●

●
●

●
●●

● ●
●● ●●

●●● ● ●

●

●● ●● ● ●●● ●

●

●●

●

● ●● ●
●

●● ●

●

● ●●
●

●● ●
●

●

●

● ●● ●●● ●● ●●

●

●

●
●

●●
●

●●●●
●

●

●

●● ● ●●
● ●

● ● ●●●
●

●●● ●
●

●
●

●●●●●● ●

●

●● ●● ● ● ●●● ● ●● ●●● ●

●

●

●

●
●

●●
● ●● ●● ●

●
●● ●●●

●

●●● ●● ●●● ●●●● ●
●

●●

●

●●●●
●

● ●●●● ● ●●●●

●

●●
●

●
●

● ●

●

●
● ● ●

●

●

●

●
● ●● ●●●

●

●●
●

●

●

●

●●
●●

●

●
●

●●● ● ● ●●●
●

● ●● ●●● ●

●

●

● ●
●●●

●● ● ●●

●

●
●

● ●
●

●●
●

● ●●● ●●● ●● ●● ●
●

●

●

●

●

●●
●

●

●

●●

●●

●● ●

●

●
●

●● ●
●

●

●

●

●
●

● ●

●● ●

●

●

●

● ● ●● ●●● ● ●

●

●

●

●● ●

●

●● ● ● ● ●●

●

● ●●● ●
●

●●●
●●

● ●

●

●● ●●
●●

●

●

●
●

●●

●
●

●

● ●

●

●
●

●●
●

●

●

●

●

●

●

●●
●

●

●

●● ●
●

●
●

●

●

● ●
● ●

●

●

●
●●

●

●
●● ●

● ●●●● ●● ● ●
●

● ●
●

●
●●

●

●
●

●
●

●
●

●●
●

●

● ●
●

●●● ●
●

●
●

●●● ●● ●

●

●
●

● ●● ●

●

●
●

● ●
● ●

● ● ●

●

●

●

●● ●●
●

● ●●

●

● ● ●● ●●●● ●●

●

●
●

●●●
●

●● ●● ●● ● ●●● ●● ●●
●

●

● ●
● ●

●
●● ●

●

●● ●

●● ●●
● ●

●
● ●●● ●

●●

● ●

●

● ●●●

●

●
●

●

●

● ●●
● ●●● ● ●● ●

●

● ●●

●

●● ● ●● ●●
●

●
●

●●
●

●●
● ●

●
● ●●

● ●●●

●

●
●

● ● ●●● ●● ●● ●● ●●● ●● ●●● ● ●● ● ●
●

●●
●

● ● ●●● ●●● ●● ●

● ●
●

●
●

●
●

●
●● ●● ● ●● ●

●

● ●
●

● ● ●● ●● ● ● ●● ●●● ● ●

●

●
●
●● ●

●
●

●

●● ●●
●

●●
●

●

● ●
●

● ● ●● ●● ●●
●

●● ●● ●●
●●

●
●

●

●●
●

● ●
● ●● ●● ●● ●● ●

●
● ●

●

●●●

●

● ●

●

●

●●●●
●

●
●

●

●

●

●
●

●
●

●

●

● ● ●
●

●

●
●

●●●● ● ●●
●●

●
●● ●●

●
●●

●

●●

●

●

●

● ●

●

●●

●

● ●
● ●

●
●●●

●

● ●

●

●

●

●●● ●

●

●● ●●●

●

● ●●● ●
● ●

●
●

●
●● ●

●
●

●●

●
●

●
●

● ● ●●
●

●

●

●● ●● ●
●

●● ●
●

●●

●● ●● ●
●

● ●●● ● ●● ●●●
●

●

● ● ●●
●

●●
●●

●

● ●●

●

●
● ●

●
●

●
●

●
●

●●
●

●
●

●

●

●

● ●
●

●●

●

● ● ●
●

● ●
●●

● ●●

●
●

●●● ● ●

●

●●●● ●●

●

●
●●

●● ● ●
●●

●●
● ●

●

●●

●

●

● ●

●

●●
●

●

●

●● ●

●

●

●●

● ●
●

●
●

●●

●

●●●

●

●● ●●

●●
●

●

●

●●
●

●●● ●
●

●●● ●● ●●

●
●●

●●
●

● ●● ● ●

●

● ● ●
● ●

●● ●

●

●

●

●●

●

● ●●

●

●
●●

●

●
●

●

●● ●

●

●
●●

●

● ●

●

●●
●

●

●

●
●

● ●● ●
●

●

●

●

●
●

●

●
●

●

● ● ●

●
●

● ●
●

● ●

●

●
●

●
●●●● ●

●

●● ●● ●● ●
●

●

● ●

●

●
●● ● ● ●● ● ●●

●●
●● ●

●

●
●

●
● ●● ●

●

● ●●

●

●● ●●
●● ●● ●

●● ● ● ● ●●● ● ●●

●●

● ● ●●
●● ●

●
●● ● ●● ● ●● ●●● ●● ●●

●
● ●

●●●●● ● ● ● ●● ●● ●● ●

●

●●●●● ● ●● ●
●

●

●
●

●● ●● ● ●
●

● ● ●● ●● ● ●● ●●● ●● ●
●

●●

● ●
●● ●●

●
●● ● ●● ●

●
● ●

●

● ●●●

●

● ●●●

●

● ●
●

● ●
●
●● ●● ●● ●

●

● ●

●

●● ●
●

●
●

● ●●

●

●

●

●
● ● ●● ●●

●

●● ●● ●
● ●

●● ●● ●● ●

●●
●

● ●

●

● ●● ●●●●

●

● ● ●● ●

●

● ● ●
●

●● ●
● ● ● ●

●

●
●●● ●●●

●

●
●

●

●●

● ● ●

●

●●

●
●

●

●

●●

●

●●
●

●

●

●

●

●

●

● ●●
●● ●● ●●● ● ●●

● ●
●●● ●

●

●

●

●

●

● ●●

●

●

●
●

●

●

● ●● ● ●● ●
●

●
● ● ●

●● ●
●

● ●●
●

●
● ●

●● ●

● ●

● ● ● ● ●● ● ●● ●

●

●

●

● ●●

●

●
● ●

● ●● ●●●●
●

● ●●

●

● ●●
●

●
●

● ●

● ●
●●

●●●
●●

●

● ●
●●

●
●

●

●● ● ●

●

● ●● ●●● ●● ●●
●

● ●

●

●
● ●

●
●

●
●● ●

●●
●● ●

●

●
●

●
●● ●

●

●● ●● ●● ●

●

●
●

●●
●

● ●●

●

● ●●● ● ●●●
●

●● ●
●●●

●
● ●

●

●
●

●

●●

●

● ●● ●●

●

● ●
● ●

●
●

● ●

●

● ●●●
●

●●●
●

● ●● ●●●
●

● ●●● ●● ●

●

●● ● ● ●● ● ●
●

●● ● ●
●

●●● ● ●● ● ● ●
●

●● ●●●● ●
●

●●●● ●

●
● ●

●

● ● ● ● ●● ●● ●● ●● ● ●
●

●●
●

● ● ● ●●

●

● ● ● ●
●

● ● ●

●

● ● ●
●

● ●
●

●●

●●● ●

●

● ●● ● ●

●

●●●

●

● ●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

● ●
●

● ●●

●

●

●
●●● ●● ● ● ●● ● ●● ● ●●● ● ●● ●

●

● ●●● ●● ●

●

●
●

●
●● ●● ● ●●

●
●●●

●●
●●

●

●

●
● ● ●

●

● ●

● ●● ●●●

●

●● ●●● ●
●● ●●

● ●● ●

●

●

●

●
●

●● ●● ●
●

● ●
●

●

● ●

● ●

●

● ●
●

●●●●
●

● ● ●
●

●

●

● ●

●●
●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

●●●

●
●●●

●
●

●

● ●
●

●

●

●

●

●

●

●

●● ●
●

● ●

●

● ●●
●

●●
●

● ●● ●●

●

● ●● ● ● ●●

●

●

●

●●
●

●

●
●

●
●

●
● ●● ●

●
●● ●●

● ●● ● ●
●

●● ●
●●

● ●●● ●●

●

●
●

●
●●

●
●●

●

●●●
●

●
●

●
●

●

●
●

● ●
●

●●●●
●

● ●●● ●●●●
●

●● ● ●● ●●●
●

●●● ● ● ●
● ●●
● ●

●● ●
● ●● ●

●

● ●●● ●

●
●

●

●● ●

●

●● ●
●

●● ●●●

●

●●● ●● ● ●

●

●

●

● ●
●

●●● ●● ●

●
●

●

●
●

●
●

●
●●

●

●

●

●●
●

● ●●● ●

●
●

●

●

●
● ● ●●●

●

● ●●● ●
●●

●

●●
●

●● ●●
●

●
●

●●●

●

● ●● ● ●● ● ●
●● ●

●
●

●
●●● ●● ●●● ● ●● ●

●
● ●●● ● ●●●

●
●●●● ● ●

●

●
●

●● ●

●
●● ●●●●● ● ●●●●● ●● ●

●

●

● ●
●

● ●

●

●
● ● ●● ●●●●

●
● ●●

●

●
●● ●●

●● ●
●

●●●

●

●●

● ●
●

●

●

● ● ●●● ● ●●

●

● ● ●●●

●

● ●● ● ●●●● ●

●

●

●
●

●●● ●●

●

●
●

● ●● ●
●

●

●

●

●
●

●●● ●●
●

●

●
●

●● ●

●

● ●●

●

●●●

●

●
●● ●●● ● ●● ●●●

● ● ●
●

●●

●

●
●

●
●

●

●

●●● ●●● ●●
●● ● ●

●
●

●●
●

●

● ●●
●

● ● ●

●

● ●● ●●
●

●●● ●● ●●
●

●

●
●

●
● ●● ● ●

●

●

● ● ●

●

●

● ●● ●

●

●

●

●
● ●●

●
●● ●● ●●●●

●
●

●
●

●●

●
●

● ●

●

● ●● ●● ●

●

●
●

●
●

●
●

●

●

●
●

● ●

●
●

●
●

●●

● ● ●
●● ●

●
●●●● ●●

● ●

●
●●

●●
●

●
●

●● ●●
●

●

●

●●● ●●●● ●
●

●● ●● ●● ● ●●● ● ●●
●● ●● ●●

●

●● ● ● ●● ●●

●

●● ●
●● ● ● ● ●● ●●

●●
●● ●●

●

●
● ●

●

●
●

●

●

● ●●

●

●

●
● ●

● ●

●

●

●

●

●

●
●●●

●

●
●

● ● ●● ●●
●

●
●

●● ●
●

● ●● ●● ●●
●

●

●

●

●● ●
● ●●●

●

●
●●

●

●

●● ●● ● ●
●● ●● ●

●
●

● ●
●

●
●● ●●

●

●
●

●

●

●●● ●● ●●●● ●
●

●●●
●

●

●
● ●●●

●

● ●● ●●●
●

●● ●● ● ●
●

●●● ●● ● ● ●● ●
●

●
●

● ●
●

●●
●

●
●

● ● ●●

●

● ●

●

● ●●

● ●

● ●● ●●
●

● ●●● ●● ●

●

● ●●●
●

●
●

● ●●●●●●● ●● ●●● ●●● ●●● ●●●● ●

●
●

●●

●

●●●
●

●●

●
●● ●

●
● ● ●● ● ●●●

●
● ● ●● ●● ●● ● ●

● ●
● ●

●
●

●●

●●● ●

●

●

●

● ●●
● ●

●

●

●

●

●●● ● ●● ●● ●●●

●

● ●●

●

●●

●

●

● ●
●

●●● ●

●

● ● ●
●●

●

●
●

●
●●●

●
●● ●

●

●
●

●
●● ●●● ●● ●

● ●

●● ●

● ●

● ●

●

●
●

●

●
●

●

●●

●

● ●●
● ●

●

●
●●

●
● ●●● ● ●●● ● ●● ●● ●

●

●

●
●

●
●

● ●
●

●● ●● ●●

●

● ●

●

●
●

●●

●

●●
●●

●

●

● ●

●

●

●

●

●
●●●

●

●

●●

●

●

●

● ●● ●● ●●● ●● ●
●

●● ●
●
●

●
● ●●

●
●

● ●

●

●

● ● ●

●

●● ●●
●

●

●

●

●

●

●
●

●● ●● ●●
●

●
●

●●● ●
●

●

●●

●● ●
●●●

●

●

●
●●

●
●

●
●

●

●● ●●● ●

●

●
●

●●● ●

●

● ●●● ●● ●●
● ●●

● ●

● ●●
● ●● ●● ● ● ● ●

●
●

●
●

●
●● ●

●

●●●● ●
●

●● ●

●

●● ● ●
●

●● ●

●
● ●

●●● ●● ● ●●●

●
● ●

●
● ●●

●●
●

●
● ●

● ●●● ●●

●

●
●

●

●

●
●

●
●

● ●●● ●
●● ●●● ● ●

●● ●

●
●● ●

● ●
●●

●

●

●

● ●●
●●

●

●●
●

●

●

●

●

●●

●

●

●

●

●● ● ●

●

●

● ●●
●

●● ●● ●
●

●
●

●

● ●
●● ●

●
●

●
●

●●●● ●
●●

●
●

●●
●●

●

● ● ●● ● ● ●●
●

● ●●
● ●●

● ●●● ●
●

●
●

● ●●

●●

●

●

●

●
●

●
●● ● ●●

●

● ● ●

●

●
●

●

●
●● ●● ●●● ●

●
●●● ●

●

●

●●
●

●

●

● ●
●

●

●
●

●
● ●●

●
●

● ●● ● ●
●

● ●● ●

●

●●

●

●
● ●● ●

●

● ● ● ●● ●
●

●● ●
●

● ●●

●

●● ●
●

●●●● ● ●●●

●

●
●

● ●
●

● ●● ●● ●●● ●
●

● ●● ●●●● ● ●● ● ●

●

●

●

●● ●●●
●

● ●

●
●● ●● ● ●● ●

●●●
● ●

●
●●

●
●

●●
● ●

●
●● ● ●
●

●
●

● ● ●
●

●●
●

●●

●

●

●● ●● ●● ●●
●

● ●
●

●● ●●

●

●● ● ●●
●

● ●●
●

●●● ●●
●

●●● ●

●

●

●

● ● ●●● ●● ● ●● ●●● ●●● ●
● ●

●● ●
●

●
●

●

●
●●● ●●

●

● ●●
●

●

●● ●

●

●
●●

●

●

●

● ● ●● ● ●
●

●
●

●

●

●
●●

● ●● ● ●●● ●●
● ● ●●

●

●● ●●● ●●● ●

●

●●
●

● ● ●● ● ●●
●

●

●
●

●
●
●● ●

●

●
●

●
●●●

●
● ●●●

●

●

●●

●●● ●

●
●●● ●

●
●

● ●

●

● ●
●

●●● ●
●●

●●●

●

●●
●

● ●●
●

●●
●

●● ●● ●
●

●●

● ●
●

●
● ●
●● ●

●
●

● ●● ●●

●
● ●

●●

●
● ● ●●

●

●

●
●

●
●● ● ●

●●●
●

●

● ● ●● ●

●

● ●● ●●●●
●

● ●● ● ●● ●● ●● ●●●● ● ● ●●● ●
●

●●● ●
●● ●

●
●

●● ●
●

●●●●
●

●●● ●
●

● ● ●
●● ● ●● ●

●

●

● ●● ●● ●● ●● ●● ●
●

●

●● ● ●●●● ●
●

●●

●

●
●

● ●

●

● ●●
● ●

●●● ● ●●

●●
●

● ●● ● ●● ●● ●

●

●

●
●

●● ●● ● ● ●● ●●● ● ●
●

●
●●

●● ●●●

●

● ●●
●

●● ●● ●●●
●

● ●●●

●

●
●

●

●

● ●

● ●

●

●

●
● ● ●● ● ●

●
●

●
●● ●

●●
●● ●●● ● ● ●

●
●● ● ●● ●● ●●● ●●

●

●● ● ●● ● ●● ●
●

●

● ●

●

● ●●● ●● ●●
●

●
●

● ●●

●

●●● ●●●
●

●●

●

●●● ●
●

● ●
●●● ● ● ●

●
●● ● ● ●●● ● ●● ●●●●

● ●● ●●● ●●● ● ●● ●●

●

●
●

●
●

●

●

●
●

●●

●●

●

● ● ●● ●
●●

● ●
●● ●

●

●
●● ● ●

●
●

●

●

● ● ●● ●
●

●

●
●●

●

● ● ●●● ●

●

● ●
●

●
● ●●● ●●● ●●●● ●●● ●

●
● ●

●
●●

●

●

●

●● ●● ●
●

●
●

● ●● ●
● ●

●●●

●

● ● ●

●

●

●●
●

●

●

●●●●

●

●

●
● ●●

●

● ●●●
●

●

●● ● ●● ●●
●

●● ●
● ●

●
● ●● ● ●●●

●

●● ●
● ●

●

● ●●

●
●

●
●

● ● ●● ●●●●
●

● ●

●
●

● ●
●

●
●●●

●
●

● ● ●● ●●●●

●
● ●

●●
●

● ●● ● ●● ●● ●

●
●

●
●● ●●●

●
● ●

●

●● ●
● ● ●

●

●

●●

●

●●● ● ●
●

●
●

● ●●

●

● ●●●
●

● ● ●
●

●● ●
●

●

● ●

●●
●

●
●

●

● ●●●●
● ● ●

●
●

● ●
●

●
●●

●

●

●
●

●● ●●● ●
●

●

●● ●●●

●●

●● ● ●●
●

●
●●

● ●
●●

● ●●● ● ●● ●●
●

● ●
●

● ●
●

●

●
●

●●
●

●

●

●
● ●

●

●

●
●●●

●
● ● ●● ●●

●● ●●
●

● ●●
●

●
●

●
●●●● ● ● ●● ●●

●● ●
●

● ●●● ● ●● ●

●

● ●●
●

●● ●● ● ● ●● ●

●

● ● ●●● ●
●

●● ●● ●● ●

●

●●●
●

●

●

●

● ●

●

● ●
●● ● ●● ● ● ●●●● ●

●
●

●
●

●

●

●

●●●
●

●

●

●

●●● ●● ●●● ●●

●

● ●● ●
●

●

●●● ●●● ● ●● ● ●● ●● ●●

●

● ●
●

●● ● ●●

●

● ● ●● ●● ●● ●●

●

● ●● ●

●

●
●

●●

● ●
●

●
●

●
●

●

● ●●● ●● ●●● ● ●●
●

● ●

●

●
●

●
●

●

●

●● ● ●●

●

●

● ●● ●

●

● ●●●●● ●● ● ●● ●●● ● ●●
●

●
●

●● ● ●●●●

●

●● ●●●●●● ● ● ●●● ●●●
●

●

●

●
●

● ●● ●●●

●
●●●

● ●

●

●● ●● ●● ● ●●
●

●

●

●●
●

●

●

●

●
● ● ●● ● ● ●

●

●● ● ●●● ●
● ●

●

●●

●●
●

●
●●

● ●
● ● ●

●
●

●
●●

● ●●
● ●● ●

●
●●

●
●●

●

●
●

●
● ●

●
●

● ●
●●●●

●

●
●

● ●●● ●

●
●

● ●●●● ●● ●
●

● ●
●

● ●
●

●

●●
●

●
●

●
● ●●

●

● ●●
●

●
●

●

●
●

● ●

●

●●

●

●
●

●

● ●●● ● ●●● ●
●
●● ● ●● ●

● ●●●● ●
●●●

●

●●● ●● ●●

● ●● ● ●
●●

● ● ●

●

●

●

●● ●

●
●

●
●

● ●

●

● ●

● ●●●●
●

●
●

●

●●● ●●●

●

●

●
●

●

● ●●●
●

● ●●●

●

●●
●

●

●

●● ●
●

●● ●
●

● ●●
●

●
● ●● ●●

●
● ● ●●●●● ● ● ●

●
● ●●●●

●

● ● ●●● ●●●

●

● ●●
●

●
●

● ●●● ●●● ●
●

●●● ●● ●●●● ● ●●●

●

●● ●●●

●
● ●● ●● ●●● ●● ●●●● ●●

●
●●

●
●

●

●● ●● ●● ● ●● ● ●●● ● ● ●
●

● ●

●

●

●

●
●

●

●

●

● ●
●● ●

●
● ● ●

●

● ●● ●●● ● ●
●

● ●●

●

●
●

● ●
●

● ● ●●

●

●● ●● ●●●
●

●● ●●●

●

● ●● ●

●

● ●

●

●● ●● ● ●
●

●

● ● ●

●
●● ●● ● ●● ●● ●

● ●
● ●

●

●●● ●
●

●

●●
●

● ●
●● ● ●

●

●●

● ● ●
●

●
●

● ●●

●

●
● ●

●●● ● ●

●

●

●

● ●●● ●●

●

●● ●
● ●

●● ●●

●●

●●● ● ●●●●

●
●

●●● ●●●
●

●● ●
●

●● ●
●

●● ●● ●
● ●● ●

●●
●

●●
●

● ●
●

●

●

●● ●●
●

●
●

● ●●● ●●

●●
●●

●

● ●● ● ●
●

●
●●

●

●

●

●

●
●

●
● ●● ●● ●● ●● ●

●
●●
●

● ●● ●● ● ●
●

●
●

●
●●

●●
●●● ●●

●

●● ● ●

●
●

●● ●●● ●●
●

●●● ●● ●

●

● ●●● ●●●●
●

●●●●

●

●
● ●

● ● ● ●
●

● ● ●
●

●
●

● ● ●●● ●● ●● ●●●
●

●

●

● ●●●

●

●●
●●●

●● ●●
●

● ●●● ●
●

●
●

●

● ●

● ●
●

●● ●●
● ● ●

●
● ●●●

●
●

●● ●● ●●● ●●●
●

●●● ●● ● ●●●
●

●

●

● ●● ●●

●

● ●● ●● ●● ●●
●

● ● ●
●

● ●
●

●

●
●

● ●

●

●●

●

● ●● ●
●

●
● ●

●
●● ● ●●●

●
●

●● ●
●

● ●●● ●● ● ●● ● ● ● ●●
●

● ●●

●

●●
●

●●● ● ●●● ●
●

●
●

●

●

●● ●

●
●●

●● ●
●

●● ●

●

●● ●●●● ●

●

●
●

●● ●●● ●● ●● ●● ●
●

●
●

● ●

●
●● ●●

●
● ●● ●●● ●●

●
● ● ●● ●●

●
●

●●

●

● ●
●

●
●●

● ●●
●

● ●

● ●

●
● ●

●● ●
●

● ●

●

●
●

● ●

●

●●
●

●

● ●●

●

● ● ●●
●

●●●

●

●● ●● ●● ●

●
●

● ●● ●
●

●● ●
●●

● ●● ●

●

●●

●

● ●●
●

● ● ●●●
●

●● ●● ●
●

●● ●●
●

●● ●●
●●● ●

●
●

● ●

●
●

● ● ●●●

●

● ●
●

●● ● ●
●

●●
●●

● ●
●● ● ●● ● ●

●
●● ● ●● ● ●

●
● ●●● ●●●● ●●● ● ●●

●●

●

●●
●

●

●

●

●
● ●

●

●

● ●● ●
●

●

●●●● ● ●● ●
●

●

●

●●●
●

● ● ●
●

●● ●● ●●
●

●

●

●

●
● ●●●● ● ●● ● ● ● ●

●
●● ●

●

● ●● ●
●

●
● ●●●● ●● ● ●● ●●

●
● ●● ●● ●●● ●●●●● ● ●● ● ●●●● ● ● ●

●
● ●

●● ●●● ●● ● ●●
●

●

●

● ●
●

●

●

● ●●
●●

● ●

●

●
●● ●

●
●●

●

●

●

● ●●● ●●● ●● ●● ●● ●● ●● ●● ●

●

●●●●● ●
●

● ●● ●

●

● ●
●

● ●
● ●

●

● ●

●

●
●

●

●
●

● ●●●● ● ●●
●

●
●

●● ●● ●
●

●●
●

●●

●

●
●

●●● ●●● ●

●

●
●●

●
●

●
●

●● ● ●●● ● ●● ●● ●●●●

●

●
●

● ●
●

●

●

●● ●● ● ●●●● ● ●●●
●

●

●●
●

●●

●●
● ●●● ● ●● ● ●

●
●● ●●

●
●● ●●

●
●

●

●

●
●

● ●●●● ●

●●
● ●● ●

●

●●
●

●
●

● ●●
●●

●

●●● ● ●●●● ● ●●●● ●●
●

●

●
●

● ●

●

● ●
●

●

●

● ●●
●

●

●●

●● ●● ● ●

●

●
●

● ●● ●

●

●
●

●
●
●●●

●●● ● ●

●

●● ● ● ●

●

●
●

● ●●● ●● ●
●

● ●● ● ●●

●

●
●

●●● ●● ●

●

● ●●●

●

●●
●

●●●● ●●● ●●
●

●●

●

●●
●

●● ●●● ●

● ●

●● ●

●

●●
●

● ●● ●● ●
●

● ● ●●●

●

●● ● ●
●

●● ●
● ●

●

●

● ● ● ●●
● ● ● ●

● ●
●

● ●● ●● ● ●
●

●
●

● ● ●● ●●●●● ● ●●● ●●

●

●● ● ●● ●
●

●

●

●●

●

●●

●

●

●
●

●●
●

●● ● ●●● ●
●

●

●

● ●●

●

●●● ●● ● ●

●

● ●
●

●
● ●

●
● ●

●
●● ●

●
● ●

●● ●● ● ● ●●

●

●
●●

● ●● ●● ●●●●
●

●● ● ●●● ●
●

●
●

●
●● ●

● ● ●

●

●●●●
●

●
●

●● ●

●

●

●

●
● ● ● ●●● ●

● ●● ● ●

●

● ●

●

● ● ●●
●

● ●● ● ●●

●
● ●●

●

●

● ●● ●●

●

●
●

●●
●

●
●●

●
●

●●

●
● ●●

● ●
●●

●●● ●● ●
●

●

●

● ●●● ●● ●●●
●

●
●●

●●
●

●●

●

●●● ● ●● ●●●●●● ● ●●●

●

● ●
●

● ● ●

●
● ●● ●● ●

● ●●● ●
●

●
●

●●● ● ●● ●● ●
●

●●
● ●● ● ●● ●● ●●
●

●● ●
● ●●

●
● ●

●● ● ● ●●●

●
●

●● ●●● ●
●

● ●
●

●
● ●

●

●

●

●
●

●

●●
●

●

●
●

●
●● ●

●
●

● ● ●● ●●●● ●

●

● ●●●● ● ●● ●● ●
●

●●

●

● ●●
●

●● ●
●

●
●

●● ● ●
●●

●
●

●
●

●

●●●
●

●
●

●●

●

●● ●●● ●●● ●●●
●

● ● ●

●

● ●●

●

●

●

●●
●

●
●

●● ●●

●

● ●

●

●
● ● ●

●
●

●

●●

●

●
● ●● ● ●

●
● ●● ●●

●
●

●
●● ● ● ●● ● ●●

● ●●

●
●● ● ●● ●

●
●● ●● ● ●●

● ●

●
●

●

●
●

●
●

●
●

●
●

● ●● ●● ●

●
●

●
●

●
●

●

●
●

● ●● ● ●

●

● ● ●● ●
●● ● ●● ●

●
● ●●● ●● ●● ●●● ●●

●
● ●●

●
● ● ●

●

●

●
●

● ●● ● ●●● ●

●

●
●

●● ●
●

●

● ●
●

●●● ●

●

●
●

●●● ● ●

●

●●●
●

●● ● ● ●●●
●

●

●

●
● ● ●●

●
● ●●

● ●●●●● ●●● ● ●●

●

● ● ●● ●● ●
●

● ●●
●●

● ●●
●

● ● ●●

●

●

●●● ●● ●
●

●● ●●
●

●
●

●
●

● ● ●● ● ●
●

● ●●●

●

● ● ●

●●
●

●
●

●

● ●● ● ●

●

●

● ●
●

●
●● ●●

●
●

●
●● ●●● ●●●

●

●

● ●●● ●
●●●

● ●

●

●● ●

●

● ●

●

● ● ●
●

●●
●

●
●● ●

● ●● ● ●●●●

●

●

●

● ● ●

●

● ●● ●● ● ●
●

● ●●● ●● ●●

●

● ●●
●●

●
●

● ●●
●

● ●
●

● ●
●

●●● ●●
●●

●●●●● ●

●
●

●

●

● ●●
●

●●
●● ●●● ●

●

●●●

●

● ●●
●

●
●

●
●

●

● ●
●

● ● ● ●
●

●

● ●
●

●

●
●

● ●● ●●●●
●

● ●●

●

● ●● ●●

●

●

●

● ●●
●

●

●
●

●●
●

●

●

●

●

●
●

●●
● ●●

●
●

●

●

● ●

●

●●● ● ●●
●

●

●●
● ●

● ●

●

●
●

●
●●

●
●

● ●
●

●● ●● ●● ●

● ●
●●

●

●
●

● ●● ●● ●●●
●● ●

●
●

● ●● ●●

●

● ●

●

● ●●
● ●

●

●●
●

● ●

● ● ●
● ● ●●●● ●●

●
●

● ● ●
●

●●●
●

●

●
● ●●● ●●

● ●
●●● ●

●
●● ●●

●

●● ●●● ●● ●
●● ●● ●● ●●●● ●●● ●

●

●
●

●
● ● ●● ●● ● ●● ●

● ●
●●

● ●
●

●
●

●
●●● ●●

●

●

●

●● ●●
●

● ●●

●
●

● ●● ●● ●

●

●●
●

● ● ●●●

●
● ●● ●

●

●
●

●

●
●

●
● ●●

●

● ●●●

●

●

●

● ●●
●

●
● ●●

●

●
●

●●
●

●

●

●

●● ●
●

●
●●

●● ●●●

●

●
● ●●

●●● ●
●

●● ● ●●

● ●

●
● ●●

● ●● ●
●

●● ● ●

●

●● ● ●● ●●● ●●●
●

● ●● ●●● ●●●●
●

●

●●
●●

●
●● ●

● ●

●

●

● ● ● ●
●

●● ●● ● ●
●●

●● ●●●● ●● ●● ● ●● ●
● ●

●● ●●● ●● ●●●●

●

●●● ●●

●

●

●

● ●
●

● ● ●
●●●

●
● ● ●

● ●

●
● ●● ●●

● ●

●●
●

●●● ●●

●

●

●

●
●

●
●

● ●●
●

●

● ●●● ●

●

●

●

●●

●

●●●● ●●
●

● ●

●

● ●

●

● ● ●
●

●

● ●●● ●●

●

● ●

● ● ●
●

●

●

● ●●

●
●

●● ● ●●

●

●

●

●

●

●

●

●● ●

●

● ●
●

●● ● ●
●

●●
●

●
● ●

●

●●●
●

●● ●
●

● ●● ●●
●

●
●

●
● ●●●

●

● ● ●

●
●

●●
● ●

●
●

●
●● ●

●
●

●
●

● ● ● ●

●
●

●● ●

●

●
●

●

●

●
● ● ●

●
●

●

●
●

●●
●

●● ● ●●●

●
●● ●

●

●

●●

●

●

● ●

●
●

●

●

●● ●
●

●
● ●●

●

●
●● ●● ●

●
●

●
●

● ●● ●●
●

●

●
● ● ●●● ●●●

● ●
●

●
●

●
●

●

● ●
●

●●
●

●
●

● ●● ●
●● ● ●

●●
●

●● ●

●

●● ●

●
● ●

●● ● ● ●
●

●●
●

● ●
●

●●
●

●
●

●● ● ● ●●●● ●●
●

●

●

●● ●
●

●

● ●

●

●●● ●●
●

● ● ●
●

● ●● ●●
●

● ●

● ●

●● ●

●

●
●● ●

●

●
●

● ●
●

●
● ●●● ●●● ● ●●

●
●

● ●
●

●

●
●

●
●

●●●
●

● ● ● ● ●● ●● ●

●

● ●● ● ● ●
●

● ● ●● ● ●
●

●● ●● ●●
●

●
●● ● ●

● ●
●

●● ●● ●●●

●

●●

●
● ● ●

●
●

●
● ● ●● ●●

●

●
●

●●● ● ● ●●●
● ●

●●●
●

●
●

● ●● ●

●

● ●●●●● ●●● ● ● ●● ● ● ●● ● ●●● ●●

●

●●● ●● ● ●
●

●● ●
●● ● ●●

●
● ●

●

●
●

●

●

●
●● ● ●

●

●

●● ●
●

●

●● ●

●
●●

●● ●
● ●

●
●● ●● ●

●
●●

●
●

●

● ●
●

●

●●
●

●●

●

●●● ●
●

●
●

●
●

●

●

●
●

● ●● ●● ●● ●
●

● ●●

● ●

●
●●●●

●●
●

● ●

●

●
●

●
●

● ● ●

●

● ●
●
●● ●●● ●● ●● ●● ●●● ●● ● ●●●

●

●

● ●●
●

●●
●

● ●●
●

●
●

●
●

●

●

●

●

●

●

●●
●

●●
●

● ●●● ● ●● ●
●

●

●
●

● ●●
●

●

●

● ●●

●

●● ●●
●
●

●
●● ●●

●
●

●
●

● ● ●●●

●

●● ●●

●

● ● ●●●
●

●● ●● ●● ●●
●

●● ●● ● ●

●

●
●
●

●●● ●● ●● ●
●

●
●

●● ●

●
●

●●

●●

●●● ●●● ● ●● ●●
●

●
●●● ●●● ●

● ●
● ● ● ● ●

●
●

● ●●●
●

● ● ● ● ●
●

● ●

●

●●
●

●

●

●

●●● ● ● ●●
●

● ●●●● ●
●

● ●
●

● ●

● ●

● ●

●

●● ●
●

● ● ●●● ●●● ●●● ●

●
●●● ●● ●

●● ●● ●● ●

●

● ●●●
●

● ●
●
●●●● ●●● ●● ●● ●

●

● ●●

●

●
●

●
● ●

● ●●●

●

● ● ●

●

● ●

●

●
●

●
●

●
●

●
●

●

●

●

● ●
●● ●

●

●● ●● ●●
●

●
●● ●

●

●

●●

●

● ●● ●

●

●

●
● ●●●

●
●●● ●● ●●● ●

●

● ●● ●● ●●●●● ●● ●
●● ●● ●●● ● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ●● ●● ●● ● ●

●
● ●

●
●

● ●● ●
● ●●

●
●

●●●
●●

● ● ●●●●
●

● ●●●●● ●● ●
● ●

●

●
● ●

●

●

●●●

●● ●● ●●●●● ●

● ●

● ●●● ●● ●●
●
● ●

●

●

●

●●
●

●
●

●
● ●●●

●

● ● ●●
●

● ●
●

●

●

●
●

● ●●● ●●

●
●

● ● ● ●

●

●●● ●● ●●●●● ●● ●
●●● ● ●●

●

●

●

●● ●● ● ●●
●

● ●●
●●●●●● ●● ● ●● ●● ●●●

●

● ●
●

●●●●● ● ●

●
●

●● ●
●

● ●
●

●● ● ●●
●

● ●● ● ●
●

●

●

●
●

● ●

●

●
●●

● ●
●● ●

●
●

● ●
● ●

●●● ● ● ●● ● ●● ●● ●● ●●● ● ●● ●
● ●● ●● ●

●

●●●●
●

●●

●
●● ●

●
●

● ●● ●●●
●●

●

●●
●

●
● ●

●

●

● ● ●
●

●●●
●● ● ●●

●
● ●●

●
● ●●● ● ● ● ●●

●

● ●
●

●

●●
●

●
●

●
●

●●
●

●●
● ●

● ●

●●
●●● ● ●●●

●● ●●● ●● ●●● ●
●

● ●●●
●

● ●●
●●

●
●

● ●● ● ●● ●● ●● ●●● ●●● ●● ●● ●

●

●●

●

●●
●

● ●● ●●● ● ●● ●●

●

●●●

●

●

●

●●●
●

●● ● ●● ● ●● ●● ●●● ●

● ●

●●

●

● ●●

●

●

● ●● ● ●●

●

●

●

●● ●●

●
●● ●● ●

● ●
●

●
●

● ●●●● ● ●●
●

●●●

●

●● ●●●● ●●
●

●●
●

●
●

●

● ●

●
● ● ● ●●

●●
●

●

●

●● ●

●

●
●

● ● ●● ●● ● ● ●
●

● ●
● ●

●
● ●● ●● ●

●
● ●● ● ●●

●

●●

●
●

● ●

● ●
● ●●

●●● ● ●
●

● ●●● ●

●
●
●

●● ● ●●●● ●

●

●●

●

● ●

●

●● ● ● ● ● ●●
●

●

●●
●

●

●

●

●● ●●

●

●

●●● ● ●
●

●

●●

● ●● ●●

●
●

●

● ●● ●
●

● ●
●

● ●

●

● ●●
●

●
●

●

● ●●●

●
●

●●

● ●● ●●● ●● ●● ●●

●

●●
●● ● ●● ● ●●

●

● ●●●

●
●
●

● ● ●● ●● ●● ● ●

●

●
●

●

●● ●● ●● ●●
● ●

●

●

● ●●●
●

●
●

●

●
● ●

●
● ●●●

●
●●

●

●

● ● ●

●

●●

●

● ●●●● ● ●●●●
●

● ●● ●● ●● ● ●●
●

● ●
●

● ● ●●
●

●●

●

●

●
● ●●

●● ●
● ●

●

●● ●●● ●●

●

●● ● ●● ●● ● ●●
●

●●
●

● ●
●

● ●●
●

●

●

●
●

● ●●● ●
●

● ●●● ●
●

● ●
●

●● ● ● ●
●

●

● ●●●
● ● ●● ● ● ●● ●●

●

● ●
●

●●●

●

●
●

●
●

● ●● ●●

●

●

●

●● ●●●
●

●●
●

● ●●●
●

●

●●●
●

●● ● ●
● ●

●

●● ●●● ● ●● ● ●● ●● ● ●● ●
●

●

● ● ● ●
● ●● ●● ●

●

● ● ● ● ●

●

●
● ●● ●

●

●

●●
●

●

● ●● ●● ●●

●

●● ●●

●

●●

●

●● ●● ●● ● ●●
● ●● ●

●

●

●● ●●● ●● ●●
●

●

●

●

●●●●
●

● ●● ●● ● ●●●●
●

● ●
●

●
● ●● ●● ●

●
● ●

●

●● ● ●
●

● ●

●

● ●●

●

●● ●

●

●●●●
●●

●● ● ●
●

●

●
●

● ●● ● ●

●●

● ●● ●●● ●
●

● ●●

●

● ●
● ●

● ● ●●● ●● ● ●●

●

●

● ●● ●● ● ● ●● ●
● ●●

●
●

●●
●

●●●● ● ●
●

● ● ●●

●

● ●●
●●●

●

●

●

●
●

●●●

●

● ●● ●● ●●●● ●● ●●

●

●
●

● ● ● ●●
●

●●● ●● ●●●● ●

●

●● ●● ●
●

●

●
●

● ●
●

●● ●●
●

●● ●● ●●
●

● ●●
●
● ● ●

●
●●

●
●●●

●
●

●
● ●

●

● ●
●● ●● ●

●
●● ● ●● ●● ● ● ●

●
● ●● ●●

●
●● ●

●

● ●●

●

● ●

●

●
●

●● ●●
●

●
●

●

●

●● ●

●

●● ●●●

●

● ●● ●●
●

●

●

● ●●● ●● ●● ●

●

●●
●

●● ● ●● ● ●● ●● ●

●
● ●● ● ● ●●●

●

●●

●

●
● ●● ● ● ●● ●

●
●

●

● ● ●● ● ●
●

●

●● ●
● ●●

●
●

●
●●

●

●
●

●
● ●

●

● ●

●

● ●
● ●

●

●
●●

●
●● ●

●
●●

● ●● ●● ●● ●● ●● ●●
●

●
●

●

●

●

● ●●● ●●● ●
●

● ●●
●● ●

●
● ●●● ● ● ●●

●
●●● ●● ●●

●● ●
●

●
●●● ● ●● ●

●
●

●
●●●

●
●● ● ●● ●●● ●● ●

●
●

●
●

●

●

●

●

●●●

●

● ●●
●

●

●

● ● ●●●
● ●

● ●●
●

● ●●
●

● ●● ●●
●

● ●

●

●
●

●●● ●● ● ●●● ● ●
● ●

●
●

●
●

●

●
● ●

●
●●

●

●
●

● ●
●● ●

●
●

● ●●
●

● ●● ●
●

●

● ●
● ●

●●

● ●● ● ●●● ●

●

●●● ●● ● ●
●

●● ●

●
● ●

●
● ●● ● ●

●

●●
● ●

●●●
●

● ●●●
● ●●● ● ●
●

●

●● ●
●

●● ● ●●
●

●

● ●
● ●●

●

●
●

●

●●

●

● ● ● ●● ●

●

● ●

●● ●
●●

●

●

●●
●

● ●
●

●

● ●
● ●

●●
●

●

●●

● ●
● ●● ● ● ●● ●

●
● ● ●●

●

●

●

●

●
●

●
●

●

●● ●
●

●● ●●● ●●
●

●

●

● ●
● ●● ● ●●

●
●● ●●●

●
●

●
● ● ●

●

● ●●
●

●●

●

● ●● ●●

●

●
●

●

●

●

● ●● ●●
●

● ●● ●●
●

● ●● ●

●

●●

●

● ●● ● ●

●

● ●●
●

● ●● ●●●

●
●●

● ● ● ●● ●
●●

● ●● ●

●
●

●

●● ●● ●● ●●
●

●●●

●

●● ● ● ●

●

●

●●

● ●● ●●
●

●
●

●

● ●

●

●

●

●

●

● ●● ●

●

● ●

●●
●●● ●

●
●●● ●●

● ●
● ●● ●● ●●● ●● ●●● ●● ●

●

●

●
● ● ● ●

●
●

●●
●● ●●● ●●●● ●●● ●● ●

●

●

● ●●●

●

●●●●
●● ●

●●

●

● ●●
●●● ●● ●

● ●
●●●●●

●

●●●●
●

● ● ● ●
● ●● ● ●● ●

●
● ●●

●●● ●● ●
● ●

●

●● ●● ●● ● ●
●● ●● ●

●
●● ●

●

●
●●●●●

●

●

●

●●
● ●●

●

●

● ●● ● ●●
●

●

●
●

●●●

●

●●● ●
●

●

●

●●● ● ●● ●●

●

●●

● ●
●●

●
● ●

●
●● ● ●● ●

●

● ●
● ●● ●● ●●

●
●

●
● ●●● ●● ●● ●●

●
●

●
●

● ● ●●

●

●

●● ●●

●

●● ●●

●
●

●● ●●● ●●
● ●● ●● ●●● ●●● ●●

●
● ●●

●

● ●● ●● ● ●● ●● ●● ●
● ●

●● ●

●

●
●

● ●
●

●● ●●● ● ●
●● ● ● ●● ●

● ●
●

●

●

● ● ●●● ●●● ●●●
●

●

● ●●
●

●

●

●
●●

●
●● ●

●
●

●● ●
●

● ●●
●

●●●
●

●●
●

●● ● ●● ●●
●

●●

● ●

●
●

● ●● ●
● ●

●
●●●●

●

●
●

● ● ●
● ●

●●●

● ●

●● ●
●

●● ●
●●

●●
●

●

●

●
●

●●● ●●
●●

●
● ●●● ●● ● ●● ●● ●● ● ●● ●● ●●

●
●● ●● ●

●
●

●

●
●● ●

●

●
●

●●

●

●
● ● ●●●● ●●

●

●
●

● ●● ● ● ●●● ●
●

● ●● ● ●●● ●● ●● ●● ● ●● ●●● ●●
●

●
●

●
●

● ●● ●● ●●
● ●

● ●● ●● ●
● ●●

●

●● ● ●●
● ●

●●● ●●

●

● ● ●● ●●●●● ●●

●
●

●● ● ●

●

●●● ●● ●● ●●●

●

●● ●
● ●●

● ●●
●

●●●● ●●●●
●

●●
●
●

●

● ●
●

●●● ●
● ●● ●● ●

●

●● ●● ●● ● ● ●
●

●
● ●● ●

● ●●● ●

●●

●●●●● ● ●● ● ●● ● ●

●

●●●

●

● ●● ●●
●

● ●
●

●
●

●●● ●●
●

●●● ●●
● ●●● ● ● ●

●
●●

●
●

●
● ●

●●
●

●
●

●

●
●

● ●
●

●●●

●

●●
●

●

●

●

● ●

● ● ●●● ● ●●

●●

● ● ● ●
● ●

●

●●
●

●

● ●●
●

● ● ●● ●
●

●

●

● ●● ● ●●●●

●

●● ●● ●●

● ●
● ● ● ●● ●●●

●

●
●

●●

●
● ●

●
●

●●● ● ●●

●
●

●

●

●

●

●
●

●

● ● ●●● ●●● ●
●●

●

●
●

●
● ●●● ●● ●

●
●

●●
●

●● ●● ●●●

●

● ●●

●

● ●●

●

●
●

●

●

●
● ●● ●

●

●●
● ●

●
●● ●

●

●
●

●

●

● ●

●
●

●●● ●
●

●●
●

● ●

●

●
●●

●

●●●
● ● ●

●● ●

●

●

●

●● ●

●
●

● ●
●

● ● ●●● ● ●●● ●● ● ●
●

●●
●

●●● ●● ●● ●●● ● ●
● ●●

●
●

● ●●
●

●
●●

●● ●●●

●

●
● ●
●

●

● ●
●

●●
●

●

● ●

●

●
●

●
●● ●

●

●
●

●
●

●
●

●●

●

● ●

●

●
●

● ●● ●● ●
●

●●
●

●

●● ●●
●

●●
●

● ●
●

●

● ●● ● ●●
●●●

●
●

●

●
● ●

● ●● ●
● ● ●●

●

● ●
●

●
●

●● ●● ● ●● ●● ●

●

●● ● ●

●

●
●●

● ●
●

●● ● ●● ● ● ●● ●

●

●
●●

●● ● ●●● ●● ● ●●
●

●● ●
●

●●
●●

● ●

●

●

●
●●

●

●● ●●● ● ●
●

●

● ●●
●

● ●
●

●● ● ●
●

●● ●● ●●

●

● ●

●

●
●

● ●
●

●

●

●●
●

● ● ●●

●●●●
●●

●

●

●

●●● ● ● ●●
●

●

●

●●

● ●● ●● ●● ●●● ● ●●●●
●

●
●

●
● ●●● ●

●
●

●
●●●

●
●

●
●

●
● ●

● ● ●● ●
● ●● ●●

●

●
●

●
● ●

● ●● ●
●

●

●
●

●● ●
●

●● ●
●

● ● ●●● ●●●

●

●
●

●●●●

●
●

●

●● ●
●

●●●● ●●
●

●●● ●
● ● ●

●
●

●● ● ●●
●

●

●

●

●

●

●●

●
●●●● ●

● ●
●

● ●●

●

●●
●

● ● ●● ●●● ● ●●● ● ●
●

●●● ●●●● ●● ●
●

● ●●● ●●

●

●
●●

●

● ●● ●
●

●●● ●
●● ● ●

●
●

●

●
●●●●

●
●●

●

●●

●
●

● ●

●
● ●

● ●●●● ●●
●

●
●

●

●●●● ● ●
●●

●● ● ●● ● ●●●
●

●● ●●
●

●

●●●
●

● ●
●

●
●

●

●

●

●

● ●● ●

●

● ●
●

● ● ●● ●● ●

●

●

●

●●

●
●●

●

●● ●● ●
●● ●

●
●● ●●

●
● ●

●
●

●

●●

●
● ●

●

●
●

● ●● ●● ● ●● ●●
●

● ● ●● ●
●

●

●

● ●●
●

●● ●● ●

●

● ●

● ●
●

●
●

●●●●●
●

● ●●
● ●● ●

●
● ●●● ●● ●● ●● ●

●

●
●● ● ●

●
●● ● ●●●

●
●●

● ● ● ●
●

●
●

●●
● ●

● ●●● ●

●
●

●
●

●

●

● ●

●

●● ●

●
●

● ●● ● ●

●

● ●●●

●

●●● ●● ●● ●
●

● ● ●● ●●

●
●●

●●

●

● ●●●●●

●

●●●●● ● ●● ●
●

●● ● ●● ● ●
●

● ●
●

●● ● ●● ● ●● ●●●

●

● ●
●

●●

●

●● ●

●
●

●●● ●

●

●●
●● ●●

● ●

●

●

●

●
●

●

●
●

● ●

●

●●

●

● ● ●

●

● ●● ●

●

●
● ●

●

●

● ● ●●●●
●

●● ●●●●● ● ●
●

●
●
●●●

●
●

●

●

●

● ●
● ●●● ●

●
●●

●

●

●

●

●

●
●

● ●
●●

●●

●●●
●

●

●●● ● ●●● ●

●

●●

●

●●
● ● ●

●
● ●● ●● ●

●
● ●

●
●

●●
●

● ●

●●

● ●● ●●

●

●● ●

●

● ●●

●

● ●

●

●

●

●● ●
● ●

●● ●

●

●●● ●

●

●

●

● ●
●

●●● ● ●
●

●

● ●●
●

●●●
●

●
● ● ●●● ●

●
●●

●
●● ●●

●●

●
●

●●●● ●● ● ●● ●

●●

● ●●●
●

●
●

● ●●

●
●

●
●● ● ● ●●●●●

●

●●

●●

●●●
●

● ●● ● ● ●●
●

● ●●
●

●● ●● ●●
●

● ● ●● ●●●● ● ●
●

●●
●

●● ●●●●
●

●

●

●
●●●●● ● ●

●

●
●
●● ●● ●

● ●

●●● ● ●● ●● ● ●
●

●

● ● ● ● ● ●●● ●
● ●

●●

● ●

●●● ● ● ●● ●

●
●● ●●● ●

●

●●●

●

●●
● ●

●
●

●● ●
● ●●● ● ● ●● ● ●●●

●

●● ●●
●

●

●

● ●●● ●

●

●

●

●● ●● ●●
● ●

● ● ●
●
● ●● ● ● ●● ● ●

●

●

●

●● ●● ●
●

●● ●

●

●
● ●

●
●

● ●

●

●

●

● ●

●

●● ●●
●

● ●●

●

●

●

● ●● ●
●

●●●●
●

●

●

●●● ●

●

● ●

●
●

●
●

● ●●
●● ●●

●●

● ●● ●
●

● ●

●

● ●

●

●●●
●

●●
●

●●

●
●

●

●

●

●

●
●

● ●●
●

● ● ●●●
●

● ●● ●

●
●●

●

●●

●
●

● ●●

●

●● ●●●
●

●●
●

●
●

●● ●

●

● ●● ●
● ● ●

●● ●

●

●● ●

●
●

●●●

●

●● ●●

●

●
● ●

●

●
●

● ●● ●
● ●●

●

●
●

●

● ● ●●● ●●● ● ●●● ●●
●

● ●● ●●● ●●●● ●● ●●

●

●●

●

●
●

●
●

●

●● ●●
●●

●● ●
●

●● ●

●

●●●
● ● ●● ● ●● ●● ● ●●

●
● ●

●

●● ●●● ●●
●

●
●● ●

●
●

●

●
●

● ●●● ● ●

●
●

●●●●

●●

● ●●● ● ●● ● ●
●

●

●
●

● ●●

●

●● ●

● ●
●

●

●

●
●

●●

●

● ●●
● ●●

●
● ●

●
●

● ●●
●

●
●

●
● ●

●●● ●●
●

●

● ●

●

● ●

●

●
●

● ●

●●

● ●●●●● ● ●● ●●●
●

● ● ●● ● ●● ●
●

●

●

● ●● ●● ●● ●● ●● ●● ●● ● ●● ●●
●

●●

●

●

●●
●

●

●● ●●
●

●●●●

●

●●
●

● ● ●● ●●●●

●●

●● ● ●●●● ●●

●

●●

●

●

●●● ●● ● ●●
● ●

● ● ● ●● ●
●● ● ●●● ●●

●

●

● ●
● ● ● ●●
●

●● ●●
● ●

●● ●

●

● ● ● ●●
● ●

●● ● ●● ●
●

●
●●

●● ●

●

● ●● ● ●

●

●●● ● ●● ●●
●

●● ● ●● ● ●

●
●

●●● ●
●

● ●●
●

● ●●● ●● ●

●

●

●

● ●●
● ● ●

● ●● ●● ●●

●

●
●

●
●

● ●● ● ●

●

●●● ●● ●●
●

● ●

●

●
●

●

●● ● ●● ● ●● ●
●●

●
●

●●

●

●● ●
●

● ●

●

● ● ●
●

●

● ●●● ● ● ●

●

●●
● ●

● ●
●

●

●
● ●

●●
●

●

●● ●●●

●

● ● ●

●

●●
●

●● ●● ●
●

● ●● ● ●● ●● ●

●

●
●

●●

●

● ●
● ●

●
● ●●

● ●

●

●● ●
● ●

●
●

●●

●

●
●

●●● ●● ●●
● ● ●● ●

●

●
●

●
●

● ●

●

●● ●● ● ●●
●

●●
●

● ●● ●
●

●

●
●● ●● ●● ●●

●

●● ● ●● ●
●

● ● ● ●●● ●

●

●

●

●

●

●●●
●
●

●●●●

●●
●

●
● ●●

● ● ●● ●● ● ●● ●
● ●●

● ●● ●

●

● ●● ● ●● ● ●●

●

● ●●● ● ●●● ●

●

●

●
●

●
●● ● ●●● ●● ●

●
●●● ●

●

●
●

●● ●● ●● ● ●
●

●●

●
●

●

●

●
● ●

● ● ●●

●
●

● ● ●

●

●● ●

●

● ●●

●

●●● ●●● ●● ● ●●●● ● ● ●●

●
●

● ●
● ●●

●●
●● ●

● ●●
●

●
● ●●●●

●● ●

●

● ●●

●

●
●

●● ●● ● ●●●
●● ● ● ● ●● ●● ● ● ●

●
●● ●

●
●●

●
●● ● ●

●
●●● ●

●
●● ● ●● ●

●
●● ●

●
● ●●

●●●
●

● ●●
●

●●
●

●
●●

● ●

●

● ●● ●●
●

●●
●

●●● ● ●●● ● ●●

●

●●
●

●●●
●

●● ●●●●
●

●● ●

●

●

● ●

● ●●

●
●

● ●

●

●
● ●

●● ●● ●●
●● ●

●

●

●

● ●● ●● ● ●●●●● ●●●● ● ●

●

● ●● ●●
●

●

●
●

●●●

●

●

● ●

●
●

●
●

●
●

●

●● ● ●

●

●●

●

●
●● ●

●

●
● ●

●●● ●●● ●

●

● ●

●

●● ●
●

●

●
● ●●

●

●●
●

●● ●
●

●

●

●
● ●

●● ●● ●●
●

●

●
●

●

●

●

●●●
●

●

●

●●
●

● ●● ●●

●

●

●
●

●● ●●

●

●● ●● ● ● ●

●

●
●

●
●

●

● ●
●●

●

●
●

●

●

●
●

● ●
●

● ● ● ●● ●●
●

●● ● ●● ● ●●
●● ●●

●●
●

●

● ●●●
●

●
● ●●● ●● ●

●

●

● ●
● ● ●

●● ●

●

●● ●
●

● ●● ●●● ●● ●● ● ●● ●● ●● ●
●

● ● ●
●

● ●●● ●● ● ●
●

●

●

●
●

●●●

●

●

●

●● ●
●

●
●

●●

●

●●
● ● ●

●

● ●
●

●
●

●● ●

●

●● ●
●●●

●

●

●
● ●

●

●

●

●●
● ●● ●

●

●● ●● ● ●●
●

●● ●●● ● ●
●● ● ●

●
●

●
●

●

●

●
● ●

●
●

●
●

●
●

● ●●

●

● ●●● ●

●

●●
●

●

● ●●

●

● ●●●●
●

●● ● ● ● ●●

●

●● ●● ●●● ● ●●

●

● ●● ●● ●●
● ●

●
● ●●● ● ●●

●●● ● ●● ● ●

●●

●

●

● ●●● ●● ●● ●
●

● ●● ●● ●
●●

● ●● ●● ●● ●●● ●
●

●● ●● ● ●●

●

●

●●

●● ●●● ●●●
●

● ●●

●

● ●

●

●●
●

●
● ●●

●

●
●

●●● ●● ●
●

●
●●

●

●
●●

●

●● ●● ●
●

●
●●

● ●●

●

● ●

●

●● ● ● ●
●●

●● ●

●

●
●

●
●

●

●
● ●●

●

●
●

●

●
● ●●●

●
● ●

●
●

●
●● ●

●
●● ● ●● ●● ●● ●

●
●● ●●

●
●

●
●

●●
●●● ● ●

● ●
●

● ● ● ●
●● ●●● ●●● ●● ●● ●
●

● ●● ●
●

● ●●

●

●

●

●
●

●

● ●●

●

●

●

●●
●

● ●
●

● ●
●●● ● ●

●
●

●
●

●

●

●●●

●

● ●●
● ●

●
●●

●
●

●
● ● ●● ●●●● ●● ●

●

●

●

●●
●

●
● ●

●
● ●●

●
●●

●

●

●

●● ● ● ●
●

●●●●● ● ●● ●

●

●● ● ●● ● ● ●

●

●●
●

●

●

●● ● ●● ●
●● ● ● ●

●
●

●

●

●●●● ●● ● ●●

●●

●● ●

●

●●

●
●

● ●● ●
●●

●

●●
●

● ●

●
●

●
●●

●●
●

●●● ●●
●

●●●
●●

●●
●

● ●●●
●

●

● ●
●●

●
●
●●● ●

●

● ●
●

●

● ●

●

●

●
●

●●●
●●●● ●

●
●

●

● ●●●
●

●

●
●●

●●● ●

●

●●

●
●

● ● ●●● ● ●● ● ●●● ●●

●

●
●● ●● ●● ●● ●●●●

●
●● ●●

● ● ●
● ●

●
●●

●

●

●

●
●

●● ● ●
● ●

●

●

● ● ●●● ●

●

●●
●

●

●●
●

●
●●

● ●●●
●

●●
●

● ●
●●

●
●●●

●
●

●
● ● ●● ●
●

● ●● ●● ●
●●● ●● ● ●● ● ●● ● ● ●●● ●●

●

●●
●

●

●

●
●●

●
●

●●

●

●● ●●
● ●

●●
● ●

● ●● ●
●

● ●●
●

● ●● ●● ●●
●

●

● ●

●

● ●● ● ●● ● ● ●●
●

● ● ●●
●

●

●● ● ● ●●● ●
●

● ●●

●

●

●
●

● ● ●●●●

●

●
●

●
●

●

●
●●●

● ●
● ● ●

●
●●
●

●● ● ●
● ●

●
● ●● ●●● ●● ●

●
●● ● ●● ●●● ● ●

●
●●● ●● ●● ●●● ●

●● ●
● ●● ● ●●● ●

●
●●

●
●●

●
● ●● ●● ●● ● ●●

●●
●

●● ●●●
●

●● ●●
●

●

● ●
●

● ●
● ●

●
●

●
● ●

●

●
●

●
●

●

●

● ●●

●

●●● ●● ● ●●● ●

●

●

●
●

●●
●

●●●
●

●● ●●

●

●

●
●

●

●

●●
●●

● ●
●

●● ●
●

●
●

●●●●● ●●

●

●

●●
● ●● ●

●
● ●●

●
● ●

● ●

●
● ●

●● ●●●● ●●
● ●

●

●

●

●● ●● ●●●

●
● ●

●
●

● ●
●●

●
●

●●

●

● ● ●
●

●
●

●●
●

●●●
●

●

● ●●●
● ● ● ● ●

●

●●●●
●

●
●

●● ●
● ●

●
●● ● ● ●

●

●

● ●●

●
●

● ●
●

● ●●
●

●
● ●● ●●

●
● ●

●
● ● ●●● ●●

●

● ●●
●

● ● ● ●
● ● ● ●● ● ●● ●

● ●
●

●

● ●●●●● ●● ● ●●
●●

●
● ●

●

●

● ● ●
●●

●●

●

●● ●●
●

● ●● ●
●

●

●

● ● ●

●

● ●
●

● ● ● ●
●

●

●

● ●● ● ●
●● ●●●● ●●

●

●
●

●●
●

● ●● ●
●

●● ●● ●●● ●

●

●

●
●
●

●
●

●● ●

●

●● ●●● ●● ●
●

●●● ●●

●

●

●

●●

●

●● ●●●●

●

●
●

● ●
●

●●
●●

●
●

●

● ●● ●

●

●
●

●
●

● ● ●● ●●●

●
●

●
●●

●● ● ●

●

● ●
●

●●●

●

● ●● ● ●●

●

●

●

●

● ● ●●●

●

●●
●

●● ●● ●● ●●● ●● ●
●

● ● ●●

●

● ●
●

● ●●

●

●

●

● ● ●
● ●● ● ●● ●● ● ●●●● ● ● ● ●●

●
●

●● ● ●
●

● ●

●

●● ● ●● ● ●●

●
●

●
●● ●

●

●●

●

●●
●●

●
●●●

●

● ●● ●

●

●
●

●
●

●

● ●●●

●

●● ●●● ●

●

●● ●●
●

● ● ●●● ● ●
●

● ●● ● ●
●

●
●

●
●

●
●

●
●

●
● ●

●

●

●

●

●
●

●
● ●● ● ●

●

●●●
●

●●

●
●

●
●

● ●●● ● ●●

●

●
● ●

●
●

●
●

●

●●●
●

● ● ●●●●●●●

●
●●

●
●●

●

●●●● ●

●

● ● ●●

●

● ●● ● ●● ●●
●●● ●● ●

● ●●

●

● ●
●

● ●●●
●

●● ●●● ● ●● ●
●

● ●
●

● ●
●

●● ●●●● ●

●

●
● ●

●

●

● ●

●

●●● ●
●

●●●
●

●

●●

●

● ●
●

●
●● ●● ●

●

● ●● ●●
●

●●
●●●

●

●●● ● ●●

●

● ●

●
●● ●

●● ●●
●
● ●●

●● ●●●● ● ●● ●
●

●●

●

●●
●
●

●
●

●

● ●

●●

●● ●● ●● ●● ●● ● ● ●
● ●

●
●●● ● ●● ●● ●● ●

●
● ● ●●●● ●●

●
●● ● ●●

●
●

●
●

●
● ● ● ●●● ●● ●●

●

●

● ● ●● ●
●

● ●● ●● ● ● ● ●

●

● ●
●

●●
●

●
●

●
●

●

●● ● ●

●

● ●●
●● ●●

●
●

●
●

● ●
●

●● ●● ●●
●

●
● ●●

●
●● ● ●● ●

●

●

●

●
●●

●
●● ●●

●

● ●●
●

●

● ●

●

●

●
●

● ●
●

●
●

● ●
● ●●

● ●
●

● ●
●

●●●
●●

●

●

●●

● ●
●

●
●

●● ●● ●● ●

●
● ●

●
●●

● ●●

●

● ●
●●

●● ●
●

●
● ●● ●●●● ●● ●● ●

●
● ●

●

●● ● ●● ● ●●

●
●

●
●

●
●

●

● ●

●

●
● ●●● ●

●

●● ● ● ●
●

●

● ●

●

●●

●

●
●

●

● ●●
●●

●
● ●

●

●● ●
●

● ●
●

●
●

● ●● ●

●

● ● ●

●●

●

●

●

●●

●

●
●

● ●● ●● ●● ●●

●
●

●● ●● ●● ●● ● ●●
●

●
●

● ●

●

●
●
●●●● ●●●

●● ●●●● ● ●● ● ●●● ●
●●

●●

●

●

● ●

●
● ●

●
● ●

●●

●

●
●

●●●

●

●● ●
●

●

●

●
●

●

● ●●

●

●

● ● ●●

●

●●●●

●

● ● ●● ● ●●
●

●●

●
●

●

● ●● ●
●●● ●

● ●
●

●

●

●

●● ● ●●

●

● ●

●

●● ●● ●● ●● ●● ●
●

● ●●
●

● ● ●●●●
●

● ●● ●
●

●● ●● ● ● ● ●●

●

● ●●●
●

● ●
●

●●

● ●
●

●

● ●● ●● ● ●●
●

● ●
●

●

●
● ●●

●●
●

●

●

● ●● ●●
●

● ●
● ●●

●
●

●
● ●●

●
●●●

● ●

● ●●●
●●

●● ●● ● ●●● ●
●

●● ●
●

●● ●●●● ● ●

●

● ●
●●● ●●●● ●
●●

● ●● ●
● ●●●●● ● ●

● ●

●

● ●
●

●●●●
●

●
●

●
●

●

● ●
●

● ●

●

●
●

●● ●● ●● ●●● ● ●

●

●●
● ●

●

●
●

●
●

●●
● ●●

●
●●● ●

●

●●
●

●

●
●

●

● ●

●
●

● ●● ●

●

●● ●●
●

●●● ●
●

●

● ●● ● ●● ● ●● ●

●

●

●

●●

●
●

●

●
● ●●

●
● ●●

●
●

●
● ●

●
●

● ●
●

●
● ● ● ●●● ●

●

●● ●●● ●

●

●●● ● ●
●

●● ●● ● ●
●

● ●
● ●

●●● ●
● ●

●●
●

●●●
●

●
●

●

●

●●
●

●
●

● ● ●
●

●

●

●

●
●

● ● ●●● ●●
●

●●● ●
●

●
●●

●●●

●

●●

●

●
●

●

●
●

●
●●

●

●
● ●● ●● ● ●● ●● ● ● ●● ●●

● ● ●●
● ● ●●

●

●
●● ●

●●
●● ●●
●

●●

●

●

●
● ●

●
●

●

●

●

●
●

●●●
●

● ●
●●

● ●

●
●

●
●

●

●●

●

● ●●

●

● ● ●
●

● ●●● ● ●

●

●●●●● ●● ●● ●●●

●

●
● ●

●

●
●● ●● ●● ● ●●

●

●

●
● ●● ● ●

●

●

●●

●

●

● ● ●● ●●

●

●●●
●

●

●

●●● ●

●

●
●

● ●
●

●●

●

● ●●
●

●● ● ●●
●●

●

●

●

●●

●

● ●

●

● ●
●

● ●● ●●
●

● ●●●

●

● ●
●●

●

● ●●
●●

● ●● ● ●
●

●
●

● ●●
●

● ●

●

●●●
●

●

●
●●●●

●
●

●●● ●●
●

●

●

● ●●
●
●●● ●

● ●
● ● ●● ●

●
●

● ●
●

● ●●
●

●

●

●

●

●●

●

● ●

●
●

●●

●

●●
●

● ●●● ●●

●

●● ●●

●

●● ●●

●

● ●●● ● ● ● ●●●

●

●
●

●● ● ●●

●

●●●●● ● ●

●
● ●● ●● ●● ●● ● ●● ● ●●

● ● ●
●

● ● ●● ●
●

●
●

●● ●

●

● ●●

●

●
● ●●● ●●●● ●●

●

● ●●
●

●●●●● ● ● ●
●
● ●● ●●● ●

●

●
● ●●

●●

●●

●
●

●

●

● ●●● ●
●

●

●●

●

●● ●
●

●

●
●

●
●

●

●

●

●

●● ●

●

●
●

●

●● ●
●

●

●

●

●

●●
●

●

●
● ●●

●

●
●

●●● ●

●

●
●

●●●● ●
●

●
●

● ●
●

● ● ● ● ●●● ● ●

●
●

● ●● ●
●

●

●
●

●

●●● ●
●

● ●●
● ●● ● ●●

●
●

●●
● ●

●

●

●

●
●

●
●

● ●●
●● ●●●

●

●

●

●
●

●●
●

●

●●●

●
●

● ●●
●●

●
● ●

●●
●

● ● ●●

●

●
●● ●

●● ●
●

● ● ●

●
●●

●
●

●●● ●
● ●

●● ●● ● ●●
●● ●●

●

●

●

● ●●
●

●

●

●
●

●

●

●●
●

●

●

●●
●

● ●●
●●

●
● ●

●
●

●● ●
●

● ● ●

● ●

●● ●●● ●●

●

●● ●●● ●●●
●

●

●

●

● ● ●
●

●● ●● ●●
●● ●

●● ●
●

●

●

●

●
●

● ●
●

●

● ●

●
●

●
●

●●
● ●

●

●
●

●

●●
●

● ●
● ●

●
●●

●

● ● ● ●
●

●

●
●●● ● ● ● ●● ●●

●

●●
●●

● ●●● ● ●
●

● ●●●
●

●● ●● ●● ●

●
●●

●
●●

●
●

●●
●

● ●●● ●●● ●● ●
●

● ● ● ●● ●●●●
●

●
●

●●

●

●

●

●●

●

●

●

●

● ●
● ● ●● ● ●●

●●● ●

●

● ●● ●
●●

●● ●● ●●

●

●●
● ● ●●●●

●
●● ●

●
● ●

● ●
●

●●● ●● ●● ● ●

●

● ●●●● ● ●● ●● ●

●

● ●

●

● ● ●● ●● ●●

●
● ● ● ●●

●
●●

●
●●

●
● ● ● ●● ●

●
●● ●

●

●

●
●

● ● ● ●● ●●● ●
●

● ●● ●●●
●

● ● ●● ●● ● ●

●

●●● ●

●

●
●● ● ●● ●● ●● ●

●

●
●

●

●

●

●●
●

● ●●
●●

● ● ●
● ●●

●
●

●

●●

●

●● ● ●●
● ●

●● ● ●● ●● ● ●

●

●●

●

● ●● ●● ●

●

● ●

●

● ● ●●●● ●● ● ●
●●

●● ●
● ●

●● ●●●●● ● ●● ●●

●

●
●

●

●● ●●
●

●
●

● ●
●

●
●

●
●

●

● ●

●

●
●

● ● ●
●●

● ●

●

●
●● ●●●

● ●
● ● ●

●

● ●● ●
●

●● ●● ● ●
●

●● ●

●

●●

●

●● ●

●

●● ● ●●● ● ●

●

●
●

●

●

●

●

●

●●
●

● ●

●

●● ●
●

●
●

●

●

●●●
● ●

●

●

●
●

●

●

●
●
●

●

●● ● ●●
●

●●● ●●● ● ●

●

● ●
●

●

●

● ●
●

●

●

●●

●

●

●●

●

●
●

●

●
●

●
●●

●

●●●●

●

●
●

●

●

●

●

●

●●
●

●●

●

● ●

●

● ●

●

● ●●●
● ●

● ●
●● ● ●

●

●●● ● ●●
●

●●● ● ●● ●
●

●

●

●

●● ●● ● ●●

●

●●

●
●●

●●● ●●● ●

●
●

●
●

● ●● ●●● ●● ●

●

●
● ● ●

●

●●● ●●●
●●

● ●● ● ●
● ●● ●●● ●

●

●
●

●
●

●

●●
● ●

●● ●● ●●●
●

●
●
●● ● ●●●●

● ● ●●●●● ●● ●●●
●

●● ● ●● ●● ● ●
●

●●●●●● ●●● ●●●●
●

● ●●

●

● ●●
●

●

●

● ●

●

●●●
●

●
●

●● ● ●

●

● ●●●
● ●●

●● ● ●●●●● ●
●

●

●

●● ●
●

●

● ● ● ●●● ●

●

● ●

●

● ● ●
●●

●

●●

●
●

●●

●

● ●
● ●

●
●

● ●●
●

●
●

●●●● ● ●

●

●●

●

●

●

●
●

●

●● ●● ●●● ●● ●●

●

●●

●

●● ● ●●
●

●
●●

●● ●●●● ● ●

●

●● ●● ●●● ●● ●● ● ●●
● ●●●

●

●

● ●●
●

● ●●●

●● ●

●

●

●●
●

●
●

● ●● ●
●
●

●

●
●

●

●

●
● ●

●
●●

●●● ●●

●

●
●

●

● ●●●
●

● ●

●
●

●

●

●

●

● ●● ●●● ●● ●
●

● ● ●
●

●

●
● ●

● ●
●● ●● ● ●

●
● ●

●
●● ● ● ●●

●
●

● ●● ●● ●●●
●

● ● ●
●●

● ● ● ●

●

●●

●
●

●
●●

●
●●●●

●

●● ● ●●●
●

●

●
●

●

●

●●
●●● ●● ● ●

●
●

●● ●
● ●●●

● ●●

●

●
●

●
●

●
●● ● ●

●

● ●●
●● ●●

●

● ●●

●
●

●
●

● ●

●

●

●

● ●

●

●●●

●

● ●

●

● ●● ●● ●● ●

●

●● ●● ●●
●

●

●

●
●

●● ●●● ●

●●

●●● ●
●

●● ●●● ●

● ●

● ●● ●● ●

●

●
●

●
●

●●● ● ●● ●●● ●

●

● ●●
●

●● ●● ●
●

●

● ●●
●● ● ●

●●
●●● ●

●
● ●

●
●

●●
● ●● ●

●
●

● ●

●
●● ●

● ●
●

● ●●● ●

●

● ●● ●
●

●● ●●

●

● ●●

●

●●
●

●● ●● ● ●
●

●● ●
●

● ●● ●●● ● ●●

● ●
●

●

●

● ●●
●●

●

●●
●

●●●● ●
●

●● ●● ●●● ●● ● ●

●

●●● ●● ● ●●● ●

●

● ●●● ● ●

●

●
● ●

● ●● ●
●

●● ● ●●● ●●
●
● ● ●● ●●●

●

●●● ●
●

● ●●

●

●

●
●

●●●● ●

●

●

●

●● ● ●
●

●

●

●

●●● ● ●

●

● ● ●● ● ●● ●● ●
●

● ●● ● ●● ●
●

●

●
●

●● ●●● ●● ● ●● ●
● ●●● ●

●

●●● ●
●

●

● ●●

●
●

●
● ● ●

●●

●●●
●

●

●

● ●●
● ●

● ●● ●

●

●
●

●

●●
● ●

●
● ●

● ●
●

●●

●

● ●

●

● ●● ●● ●● ●●● ●●

●

●

●

●

●
●

●●●
●

● ● ●
● ●

●● ●● ● ●●● ● ●
●

●● ●●
● ●

● ●●

●

●

●

●●●●● ●●●
●●

●
● ●

●● ●●
●

●● ● ●● ● ●●●● ●
●●

●

●

●

● ●●●●
●

●
● ●● ●● ●

●

●

●

●●
●

●

● ●●
●

●
●●

●●

●
●

●● ● ● ●

●

●
● ● ●●● ●● ● ●●● ● ●● ●

●

● ●● ●

●

●

●

●

●

●

●

●
●

● ●
● ●●

●

● ● ●● ●● ● ● ●●
●

● ●
● ●

● ●● ●●●● ●●

●
●

●
●

●● ●●

●

●

● ●● ●●●
●

● ● ●

●

●

●

● ●● ●

●

● ●

●

●
●

●

●● ● ●●● ● ● ●●

●

● ●
● ●●

●

●
● ● ● ●

●

●● ●●● ●● ●
●

●● ● ●

●

●
●

●●

●

●
●●●● ●●● ●

●

●●
● ●

●●
●

●● ●
● ●

● ●●
●●

●● ●
●

●●●

●

● ●●
●

●● ●● ●

●

●● ●
●

● ●● ●
●

● ●● ●

●

● ●●

●

● ●
●

●●

●
●

●
●

●
●

●● ●● ●● ●●● ●

●

●●
●●

●●●●●

●

●●

●

●●
●

●

●
● ● ●

●

●● ●●
●

●

●●
●●●

●
●● ● ●● ●

●

●

● ●● ●● ● ●
●

●

●

● ●

●
●

●●

●

● ● ●●
● ●

●
●

●

●

●

●

●

●

●● ●●
●

●

●● ●
●

● ● ●●● ●● ●● ●● ●●

●

●●

●
●

●●● ●
●

●

●

●

● ● ●● ●● ● ●● ●●

●

●

●

● ● ●●●

●●
● ●●

●

● ●
●

●

●
●

●

●

● ●● ● ●

●

●
●● ● ●●●

●

●

●

●● ●
●

●

●●
●

●● ●●●
●

● ●

●

●

● ● ●

●

● ●● ● ●●

●

●● ● ●●
●

●

●

●●
●●

●
●

●
●

●

●●●● ●
●

● ●●●
●

●

●●●
●

● ●●● ●●

●

●

●

● ●● ● ●

●

●

●

●
●●● ●● ●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●● ●●●● ●
●●

●
●

●
●

●

●

●●

●● ●

●

● ●

● ●

●● ● ● ● ●
● ●

● ●●
● ●

●

●●
●●

● ●
●

●●

●

●

●
● ●●●

●

●

●

●

●
●● ● ●

●

●●
●

●●

●

●

●●

●

●

●

●

●
●

●

●● ●

●

●
●●

●

●
●

● ●●
●

●
●

●
● ● ●

●
● ●

●
●● ●● ● ●● ●

●

● ●
● ●● ●

●
●

●

●

●

●

●

●

● ●● ●● ● ●● ●●
●

● ●
●

●
● ●●

●

●

●

● ●●
●

●

●
●●

●
● ●

●

●

●●
●●

●

●
●

●●● ●
● ●

● ●●●

●

●● ●
●

●
●

●
●●

● ●● ● ●● ●

●
● ● ●●● ●●●●

●

● ●● ● ●

●

● ●● ● ●●●● ●

●

●
●

●● ● ●●● ● ●● ● ●●
●

●
●

●● ●●
●

● ● ●● ●●

●

●

●
●

●

●● ● ●● ●●

●

●●
●●

●

● ●

●
●

●
●

●●● ●

●

●

●

●

●
● ●●● ●● ●

●
●●● ●● ●● ●

●
● ●● ● ●●● ●

●

●●

●

● ●
● ● ●

●
●

● ●● ● ●

●

●
●● ●●

● ●● ●●

●

●●
●

●

● ● ● ●
●

●

●●

●
●● ●●● ●

●
●

●

●

●

●
●

●● ●●●● ●

●
●

●
●

● ●●

●

●● ●●
●

● ●●● ● ●
●●● ●● ●●

●
● ●

●

●
● ●●

●

●●
●

●

● ●
●

●●●●
●

●

●

●
● ●●

●
●

●● ●
●

●

●

● ● ●● ●
● ●

●
●

●
●●● ●●

●

●

●

●

●● ●

●
●

●

●●

●
●

●● ● ●●

●
● ● ●

●

●●● ●●
●

●●

●
●

●●
●

● ● ●●●
●

●

●

●●

●

●
●

● ● ●
●● ●

●
●

●
●

●●

●
●

●

●

●
●

● ●● ●
●

●
●

●

●

● ● ●● ●

●

● ●●

●

● ●●● ●●

●

●●
●

● ●●

●

●● ● ●●

●

● ●
●

●● ●

● ●
● ●● ●

●

●

●●
●●● ●

●

●

●

●
●● ●● ●● ●

● ●
●

●

●
●

●

●
●

●● ●●● ●●

●

●
●

●●
●

●

● ●●
●●

● ●●● ● ●● ●●● ●●●
● ●● ● ●●● ●● ●●●● ●● ● ●●● ●● ●

●
●

●
●

●
● ●

●

●●● ●● ●
●●

●

● ●
● ●●

●
● ●

●

●

● ●
●

●

●

●

●
●

●

●

●
●●●● ● ●●

●

●●
●

● ● ●● ●● ●● ●
●

● ●● ●●
●

●●

●

● ●●●
●

● ●●●
●

● ● ●●● ●● ●●● ●● ●●● ●● ●●● ● ●
●

●
●●● ●

● ●●

●

● ●
●

● ●● ●●●● ●● ●●
●

●● ●●

●

●●● ●● ●● ●
●

● ●
●

●●● ●

●

● ●● ●●● ● ●●● ●●
● ●

●
●

●

●●● ●

●

●
●

●

●
● ●

●
●● ●● ●●●

●
●

● ●
● ●

●

●

● ●

●
●

●

●

● ●

●

●●

● ●

●
●
●

●

●●●
● ● ● ●●●

●

●● ●

●

●●● ● ●● ● ●

●

●● ● ●

●

●●
● ●

● ●●
●

●

● ●

●
●

●●

● ●
●

●

●●●● ●●●● ●
●

●●

●

●
●●

● ● ●●●
● ●

●

●
●●

●
●

● ●● ● ●●

●

● ●
●

●●
●
● ●● ●

●

● ●●

●
●

●●● ●● ●
●

●

●

●

●
● ●

●

●

●

●●● ●●

●

●
●●

●
●●●

●

●
●

● ● ●●● ●●●●
●

●

●

● ● ●

●

●

●

● ●●

●
●

●

●

●●●● ●● ● ● ●● ●●●

●

●● ●● ●● ●
● ●● ● ●●

●

● ● ●
●

●● ●
●

●● ●●● ●●
● ●●●

●
●

●
●● ● ●● ● ●●●●

●
● ●● ●

●

●
●● ●

● ●●●● ●

●

●● ● ●●●● ●● ●●● ● ●● ●
●●

●●
● ● ●● ●● ●●● ●

●
●● ●●

●

●

● ● ●

●

● ● ●● ●●● ●
●

●

●●
●●●

●●● ●
●

●

●
●

●
●●

● ●●

● ●

● ●● ●

●
●

●
● ●●●● ●●

●● ● ●

●
●

● ●● ●

●

●●● ●●● ● ● ● ●●●
● ●● ● ●● ● ●●● ●●

●
●

●
● ●

●
●

● ●●●
●●

●● ● ●

● ●
● ●● ● ●

●

●● ●
●●● ●●● ●● ●

●
● ●

●
●●● ●●● ●●●●●

●
●

●
●

●●●

●

●●●● ●●● ●● ●
●

● ●● ●● ●
● ●

●

●

●●
●●

●

●
●

●● ●●● ● ●● ●

● ● ●●
● ●●● ●

●

● ●
●

●● ● ●●●
●

●●
● ●

● ● ●● ●● ●● ●
● ●

●●● ● ● ●● ●

●

●● ●
●

●

●

● ●● ●● ●●

●

●●

●

● ●
●●●

●
●

●●
●

●

●

●
●

●

●●
●●● ●●● ●

● ●●
●

●● ●

●

● ●●●
●● ●

●

● ●

●

●● ●
●●

●●● ● ●● ● ●

●

●●● ●

●

● ● ●●
●

●
●

● ●
●

●
● ●

●

●
●

●
●●●

●
● ●

●

●● ●●●
●

●●

●●
●

●●
●

●
●● ●

● ● ● ●●
●

●
●

●
●

● ●● ●● ●● ●●
●

●

●
●

● ●

●

● ● ●
●

●
●● ● ●

●
●

● ●

●

●● ●● ●

●

●● ● ●
●

●

●
● ●● ●

● ●
●

●
●

●

● ●
●

●●● ● ●

●

● ●● ●
●

●● ●●● ● ● ●
● ●
● ●

●

●● ●
● ●

●
●●●

●
●●

●
●

●● ●●
●

●

●
●

●
●●

●● ● ● ●●● ●
●

● ●

● ● ●● ●
●

●●
●

●

●

●● ●
● ●

●
●●●● ●

●
●●

●
●●

●
● ●

●

●

●●

●●

●●
●● ●

●

● ● ●

●
●

●● ● ● ● ●● ●

●

●

●

● ●● ● ● ●● ●●
●

● ●
●

●●
●●

●

●

●
●

●●● ●
●
● ●●

●

●
●

●
●●

●

●● ●●● ●●● ●
●

●

●●
●● ●

● ● ●
● ●

●
●● ● ●●

●

●●●

●

● ●

●

●
●

●
●

●● ●●● ●●● ● ●● ●

●

● ● ●●

●

●● ● ●

●

●●

●

●
●

● ●
●

● ●
●

●
●

●

●

●●●

●

●●

●

●●● ●●● ●● ● ●●

●

●

●
●

● ●
●

● ● ●

●
●

●●
●

●
● ●

● ● ●●● ●●
●●● ●●

●
●●

●

● ●
●

●● ● ●●●●

●

●

●

●
●●● ●●

●

●

●

●

●

● ●

●
● ●

●
●●

● ● ● ●●●

●

●

●
●

●
●

●

●
●

●

●
●

●

●

●●

●

● ● ●●

●

●● ●
●

●● ●
●

●

●

●
●●● ●

●

●
●●

●●

●

● ● ●● ●●●

●

●
●

●

●● ●● ●
●

● ●
●

●● ●
●

● ●●● ●● ●●●

●

● ●● ●●● ●● ● ● ● ●
● ●●

●

●

●

●● ●●● ●●● ●
● ●

●● ● ●● ●

●

● ●●
●

●● ●

●

●
●●

●
●●

●
●

●
●

●
●

● ●●
●

● ●● ● ●
● ●

● ● ●
●

● ●● ●● ●
●

●●
●●

●● ●●

●

●●● ●

●

● ●● ●

●

●
●

●

●

●●● ●● ●

●

●●
●

●
●

●

●

●

●

●●
●

● ●

●

●
●

● ●
●●

● ●

●

●

●

●● ●
●

● ●
●

●● ●● ●● ●● ●

●

●
●

●
●●● ●● ●●●● ●● ●

●● ● ●●
●

●●● ● ●
●

●

●
●● ●● ● ●●● ●● ●● ●

●
● ●

●
● ●

●
●● ●

●
●
●

●
●

● ●
●

● ●
●● ● ● ●●

●●
●

● ●
● ●● ● ●

●

●
●

●

●● ●
●

●● ●
●

● ●●●● ●●●
●

●●● ●●●
●●

●

●
●

● ●●● ●● ●● ● ●● ●● ● ● ●
●

●
●●● ●

●

●●● ●● ●● ●

●

●●● ●●●●● ● ●

● ●
●●●

● ●● ●
●●

●

●

●
●● ●●● ●●

● ●
● ●● ●● ●●

●
●●●

●● ●
●

●● ●●● ●
●

● ●●● ●● ●●● ●●
●

●●
●

● ● ●●●
● ● ●

●

● ●

●

●● ●
●

● ●●●
● ●●

●

●
● ●

●
●

●

●

● ● ●●● ●● ● ●●

●

●

●

●

●

● ●
● ●

●●● ●
●●

●●
●●

●

● ●● ● ● ●
●

●

●
●

●
●

●● ●●
●

●●● ●

●

● ●
● ●●● ● ●● ● ●

●

●
●

●●
●

●●

●
●

●●
● ●●

●

●

●

●

●
●

●
●

● ●●
●

●● ●● ●● ●● ●●
●

●

●

● ● ●● ●
●
●

●

●
● ● ●● ●

●●
●

●

●

●

●● ●●● ●
●

●● ● ●●
●

●
●

● ●● ● ●● ● ●

●

●

●

●●●

●

●●

●

●●

● ●
●

●●

●

●●

●

● ●●●
●

●● ●● ●● ●● ● ●

●

●● ●
● ●●● ●

●
● ● ●●● ●

●

● ●● ●●●
●

● ●● ●●● ●
●

● ●

●

● ●●● ● ●● ● ● ●● ●
●

●●●

●●●● ●
●

●●

●

●●●● ●

●

●●●● ●●
●

● ●●
●

● ●●
●

● ●● ● ● ●

●

●
●

●●● ●●● ●● ●●

●

● ●
●

●

●

●●
●

● ●●● ●● ●
●●

● ●●● ●
●

● ● ●
●

● ●●● ● ● ●● ● ●
●

●●
●●

●● ●● ●●●
●

● ●● ●● ●● ●
●

●●
● ●● ●● ● ●● ●●●

●
● ● ●

●

● ●●

●

●●●● ● ●●● ● ●● ●●
●

●● ● ●● ●
●●

●
●

●●
●

●
●

●
●● ●

●
●

● ●● ●●●● ●● ●●●

●
● ●● ●●

●
●

●

● ●● ●●● ● ●● ●● ●●

●

● ●●● ● ●●

●

●● ●
● ●●● ● ● ● ●●

●
●●●●●●● ●

●
●● ●●

●

●● ●●● ●● ●●
●●● ●●

●

●● ●● ●●●
●

●

●

● ● ●● ● ●● ● ●

●

●● ●

●

● ●●
●

●●●

●

● ●

●

● ●●●●●● ●● ●

●

●

● ● ● ● ●
● ●

●●● ●●
●● ● ●● ● ●● ●●● ●●

●

●

● ●

●●●
●

●

●
●

● ●
●

● ● ●

●
●●●●

●
●●

●

●

●●

●

●● ●
●

●
●

●● ● ●● ●

●

● ●● ●● ● ●
●●● ●

●
● ●

● ●● ●● ●

●

● ●
●

● ●●

●

●●● ●●●●●
●

●

●
●

● ●

●

●●

●

●

●

●● ●● ●● ●

●

●
● ●

●
●

●

● ●
●●

●●
●

●●● ●● ● ●

● ●

● ●

●●
●● ● ● ●●

●●●
●

●

●
●

●
● ●●

●

●●
● ●

●

●
●

●
● ●● ●●

● ●● ●● ●

●

●
●

●●

●

●●
●●

●●●
●● ● ●●

●

●
● ● ●●● ● ●●● ●●● ●

●
● ●

●

●●
●● ●

●

● ●● ●

●

● ●●●●●●

●

●

●

●

●

● ●
●●

●
●

●● ● ● ●

●

● ●

●

●●
●

● ●
●

●

● ●

●●
● ● ● ●

●
●

●●

● ● ●●●
●●

● ● ●● ●

●

● ●●
●

●

●

●● ●●●●
●

●
●

● ● ● ●●

●

● ●

●

● ●

●

●
●

●● ● ●
● ●● ●●●● ● ●

●
●

●● ●● ●●● ●● ●
● ●

●

● ●●● ●●
● ●

●
●● ●●

●

●

●●

● ●●● ●● ● ●●
●

●
●

●●
●

●
●●●

●

●

● ● ● ●
●

● ● ●● ●

●

●
●●

●

●● ● ● ●●●●
●

●● ●
●

● ● ●●●
●

●
● ● ● ●●

●

●

●
●

●
● ●●● ● ● ●●

●

● ●
●

●●
●

● ●
●

●

●
● ●● ●

●
●

●

●

● ● ●●●●

●

● ●

●

●● ● ● ●

●

●
●

●● ●

●

●
● ● ●●●

●

● ●
●

●● ●●●
●

●

●

●

●
●

●● ● ● ●● ●●

●
●

●● ●● ●● ●
● ●

●

● ●
●

●● ●● ●
●

●

●●

● ● ● ● ●● ●●

●
● ●

● ●● ●

●
●

●
●

● ●● ●●
●

●

●

●
●

●
●

● ●●

●

●● ● ●

●

●● ●

●
●●

●

●●

●

●
●●● ●● ●

●
● ●

●●
●●● ●● ●●

●

●
●● ●

●

●
●● ●

●
● ●

●

●● ●

●
●

●● ●

●
●

●● ● ● ●
●

●

●
●

● ●
●

●

●

●

●

●
●● ●● ●

●
●●●
●

●

●

●

●

●● ●● ●
●

● ●● ●●
●

● ● ●

●

●●● ●

● ●

●●●
●

●● ●● ●●●●

●

●● ● ●
● ●●●● ● ● ●

●
● ●● ● ● ●●

●

● ●

●

●● ●

●
●

●

●
●

●● ●●● ● ●●
●

● ●●
●● ●

●
●

● ●
●

●
●

●

●
●

● ● ●● ●●

●

●●●● ●●
●

●

●

●
●

●
●● ●● ●● ● ●

●
●

●
●

●●
●

● ●

● ● ●● ●
●●● ●

● ● ●
●●

●

●●

●

● ●●● ●● ●●
●

●●

●
●●

●

● ●● ●●
●

● ●● ●●●
●

●
●

● ●●● ●
● ● ●●

●
● ●●●

●
●● ●● ● ●●●● ● ●

●
● ●●● ●●●●●

●
●● ● ●●

● ●● ●●●

●

● ●
●

●

●
●●

●
●

● ●●●● ● ●● ●●●●

●
●

●●

●
● ●● ●●● ●

●
●●● ●● ●●

●
● ●

●
●●

●●
● ●●● ● ● ●

●

●

●

●● ● ●●

●

●●
●

● ●
●●

●● ●
●

●● ●● ●
●

●● ●●

●

●● ● ●● ●● ●● ●●●
●●● ●●

●

●
●

●● ● ●● ● ●

●

●● ●
●●

● ●●
●

●
●

●

● ●●

●

●● ●● ●●●
● ●

●●

●

●● ● ●●●●●
●

●

●

● ●●
●

● ● ● ●
●

● ●
●

● ●●● ● ●
●

●

●●

●

●

●

●
●

● ● ●
●●

● ●

●
●● ● ● ●●

● ●

●●
●

● ●● ● ●● ●

●

●

●

●●

●

●●● ●●● ●● ●●● ●● ● ●●● ● ●●
●

●
● ●

● ● ●● ●●

●

●

●

●
●

●●● ●

●

●
●

●
●

● ●
●

●

●

●

●●● ●
●●

●● ●

●

●

● ●

●

●

●

●● ● ●
●

●● ● ●●
●

●

●

● ●● ●

●

●● ●●● ●● ●●

●

●
●

●●● ●
●

●

●

●

●

● ●●
●

●

●

●● ●●

●

●● ●●
●

●●●

●

●●● ●● ●●
●

●● ● ●● ●
●

●

●●

●
●

●●●●

●●

● ●

●

●● ● ● ●●

●

● ●●● ●

●

●

●

●●● ● ● ●● ● ●● ●
●

●●●
●

● ●

● ●

● ●●
● ●

● ●● ● ●●
●●

●
●

●●
●

● ●●
●

● ●
●

●

●
●

● ●●
●

●

●

●● ●●● ● ●●● ●●

●

●●● ● ●●
●

● ●● ●
●

●
●●●

●
● ●

●●

●

●

●
●

● ●

●

● ● ●●
●

●● ●●●● ● ●● ●●● ● ●●
●

● ●● ●●●● ● ●●

●

●●● ●● ●●

●

● ●
●

● ● ●
●

●● ●●● ●●

●

● ●●●●
●

●●●
●

● ●
●

●

●

●

●● ● ●
●

●

●● ● ●●●
●

●● ● ●●
●

●● ●●● ● ●● ● ●●
● ●

● ●
●

●● ●● ●●
●

●●●●● ●●
●●● ●

●
●

●
● ●

●
●●● ● ●● ●

●
●

●

●● ●● ●

●● ●
●● ●

●

●
●

●
● ●●

●

● ● ●
●● ●

●
●

●
●● ●●

●
●

●
●●●

●
●

● ●
●

●

●
●

●

●
●

●

● ●● ● ●

●
●

●●● ● ●
●

● ●

●

●

●

● ●

●

●
●●●

●

●
●

●● ●● ●
●

●

●
● ● ● ●

●
● ●●● ●● ●● ● ●●● ●●

●

●

●

●●●

●

● ●●

●

● ●●
●

●● ●● ●●●

●

●●
●

●●
●

●● ●

● ●
● ●

●
● ●● ●● ● ●● ●●● ● ●● ●

●

●

●
●

●

●

●

●●●
●

●
● ●● ● ●

●
●● ●

● ●●
●

●
●●

● ●
●

●

●
●●

●●
●

●
● ●

●

●
●

●
● ●

●

●
●●●● ●

●●
● ● ●●●● ●●● ● ● ●
●

●

●●
●●

●

●
● ●

●●● ●●

●
●

●●
●

● ●

●

●

●●
●

●● ●● ●

●

●●

●

●

●

● ●●

●

● ●

●

● ●
●

●

●
● ● ●● ●

●

● ● ●●
●

● ●●● ●●● ●●

●

● ●● ●
●

●●
●●

● ●●●●●
●

●
●●

●
●

● ●● ●

●

●

●

● ● ●
●

●●

●

●● ●
●
● ● ●

● ●● ● ●
●

●●●● ● ●
●

●

●

●
●

●●●●
●

●
●

●●●
●

● ●
● ● ●

●
●

●

● ● ●●● ●●
●

●● ●●●

●

●
●●

●
●● ●●●●

●
●●● ● ●●● ●●● ● ●●

●● ●● ● ●
●

●
●●●

●
● ● ●

●● ●●● ●
●

● ● ●

●
●●● ●

●

●● ●● ●
●

● ● ●● ●●

●

●●
●

●
● ●● ●●

●
● ● ●●●

●
● ●● ●●

●
●● ●● ● ●● ●

●

● ● ●

●

●
● ●

●

●
●

●● ●●●

●

●

●
●

●●

●

● ●● ●

●

●●

●

●
●

●

●

●

●● ●
●

●●● ●
●

● ●●
●

●● ●●

●

●●● ●● ●●
●

● ●●● ● ●● ●● ● ●● ●●● ● ●● ●

●

● ●
●

●●
●

●
●

●
●

●●● ● ● ●
●

●● ●
●

●●●

●

● ●
●

●● ●● ● ●●● ● ●●● ●● ●
●

●● ●●

●

●
●

● ●●●
●●

●● ●● ●

●
●

● ● ●● ●● ● ●● ● ●●

●

●
● ●●● ●●● ●● ● ●● ●● ●● ● ● ●

●

●

●

● ●●
● ●●●● ●● ●● ●●

●

●● ●●

●

● ●
●● ●● ● ●●●● ●●● ●● ●

●
● ●●

●

●
●●● ●

●

● ●●
●●

● ●●
●

●● ● ●

●
●

●●

●

●●● ● ●●●● ●
● ●●

●

●
●

● ●●●
● ●

●
● ●● ● ●●● ● ● ●●

●●
●

●

●

●

●●●● ● ●●●

●

●

●

●●

●
●●

●
●

●

●

●
● ●●

● ●
●

●

● ●

●

●●

● ●

●●
● ●

●

●
●● ●● ●● ●● ●

● ● ●
●●

●
●● ●

●●●
●● ●● ● ● ●

●

● ●● ●●
●

● ●

●

●●●
●

●●● ● ●● ●
●

●
●

● ● ●
●●

● ● ●● ●●

●

●
●●

●
●● ●●

●

●
●

● ●●
●

●●

●

● ●● ●
● ●

●
●●● ●●● ●

●
●

●
● ●●

●
●

●

● ●
●

●● ●
● ●●

●

●

●

●

●
●

●

● ●●
●

● ●
●

●

●

● ●●
●

●
●

●
●

● ●

●

●
●●●● ● ●●● ●● ●

●
●

●

● ●
●

●
●

●

●●
●● ●

●
●● ●●

●
●

●
●● ●● ● ●●●●

●●

● ●● ● ●● ●

●

●● ●● ●
●

● ●

●

●●● ●●

●
●

●

●
●

● ●●●● ● ●● ●
●

●
●

●
●

●
●

●
● ●●

●
● ●●

●
● ●●●

●

● ●●● ●●● ●●●
●

●● ● ●●●

●

●● ● ●●●●●

●

●
●

●
●

●●
●● ●●●●

●
●●●●●●

●

●
●

●●
●

●
●

● ●●
●

●
●

● ● ●

●

●●

●
●

●● ●●
●

●

●●
●

●
●

●● ● ●●

●

●
●●

●
● ● ●

●

●
●

●●●● ●● ●●

● ●
● ●●

●

● ●

●

● ● ●● ●● ●●

●

●●
●

●
●● ●

●
●

●

● ●●
●

●●

●

●
●●●

●
●

● ●

●

●
●

●
●

●

● ●● ●●● ● ●
● ● ●● ● ●●

●
●●●

●
● ●

●

●

● ●●

●

● ●
●

●●●

●

●

●
●

●
●

● ●● ●● ●
●

●

●●
●

●● ●● ● ●● ● ●
● ●● ●●● ● ●

●

● ●
●

●●
●●

●
●

●●● ●● ●●

●●

●●
●

●

●

●

●●
●●● ●

●
●

●

●●

●● ● ● ●● ●● ● ●● ●
●

●●
●

●

●
●

●●

●
● ●

●
●

● ●
●

●
● ●●●●

●
●●

●

●●

●

●● ●● ● ●●
●

●

●

● ●● ● ●● ●
●

●

●● ●●

●

● ●
●

●

● ●
●
●●

●
●

●●
●

● ●● ● ●●● ●●

●

●●
●

●● ●●

●

●
●

●
●

●
●●●● ●

●
●

●
●

●
● ●●● ●

●

●
●

●

●●●●
●●

●

●●● ● ●●● ●●
●

●●
●●

● ●
●●

●
●

●
●● ●●

●

●● ●●●
●

●● ●

●

● ●
●

●●
●

●

●

● ●● ●●
●

●
●

●

● ●●
●

●● ●
●

● ●

●

● ●
●

● ●

● ●● ●● ●● ●●
●

● ●●●●

●

● ●

●

●
●

●
●

●●● ● ●●● ●
●

● ●
●

● ● ●●

●

●● ●● ● ●
●

●
●

● ●●● ●●●● ● ●●● ●●

●

●●
●

●● ●● ●● ●●●
●

●
● ●● ●

●

●●● ●

●

● ● ●●● ●● ●● ●

●

●●
●

● ●
●

● ●

●

●
● ●

●

● ●

●

● ● ●●●● ●●●
●

●●

●

●
● ●

●
●

●●
●

● ●● ● ●●● ●● ●●●● ● ●●● ●

●
●

●●
● ●

●

●● ●
●● ●●● ●

●●● ●●
●
●●

●

●
● ●●

●
●●●

●
●● ●●

●
●

●

●

●●

●

●
●●

●
● ●

●● ●
●●

●

●

●
●

● ●●●

●

●●●

●

●● ●●

●

● ●● ●● ●●
●

● ●●● ● ●

●
●

●

●

●
●

●

●

● ● ●●● ● ●● ●● ●
●●

●

●●●

●

●
●

● ●

●●
●●

●

●

● ●

●

● ●

●

●● ●●

●
●

● ●

●

● ● ●●

●

●● ●● ●● ●

●
●

●

●●●●
●

●

● ●● ●

●

●
●

●

● ● ● ●● ●●●
●

● ●

●

●
● ●●

●

●
●●

●
●

●
●

●
●

●
● ●

●

● ●● ●●
●

●●●
●

●

●

● ●
●●

● ●
● ●● ●●●

●

● ●
●

●
●

● ●●●

●

●●
●● ●

●
●

●
● ●

● ●

●

● ● ●●
●

●●● ● ●●

●
● ●

●●
● ●●

●●

●

●

●
●●

●
●●● ●● ● ●

●

●
●

● ●● ● ●● ●●
●●

●● ●●
●

●● ●

●

●● ●●
● ●

●● ●

●

● ●● ●

●

● ● ●

● ●

●●
●

●●● ●●● ●

●
●

●● ●● ●
●

●● ● ● ●● ●

●

● ●

●

●

●

●
●
●● ● ●

●

●● ●
●

● ●● ●●
●●

● ●● ●
●

●
●● ●●●● ●●

●

●●●●
●
●●

●
●

●
●

●
●

●

●●● ●
● ● ●

●

● ●
●

●●
●

●

● ● ●●● ●● ●
●

●

●●● ● ●● ●

●

● ●●

●

●●
●

●

●

●

●●●●●● ●●●● ●
●

●
●

● ●

●

●● ●
●● ● ●

●

●

●

●●
● ● ●●● ●● ● ●●● ●● ●● ● ●

● ●
●

●
●

●●●● ● ●● ●● ●
●

●
●

●
●

●

●●●

●

●●

●
●

● ●●
● ●● ● ●●

● ●●
●● ●

●

●
●●

●

●

●●
●
●● ●

●
● ●● ● ●●

●

●
●

●

●
●

●
●● ●

●

●● ● ● ●
●

●● ●●

●
●

● ●● ●●● ●

●

●

●●
●

●

● ●

●

●●●●

●

● ●●

●

●

●

●
● ●

●

●● ●

●

●

●

●

●

●●

●

●
●

●●

●

● ● ●

●

●
●● ● ●

●● ●
● ●

●
●

●
● ●

●

● ● ●

●

● ●●● ●● ●

●

●

●
●

●
●

● ●● ●●● ●
●

● ● ●●
●

●●

●

●
●

●
●

●● ●●
●

● ●
●● ●●

●

●
●

●

●

●●●
●

●
● ●

●
●● ●

●
● ●● ● ●

●
●

●
● ●

●
●

●
●

●
●● ●

●

●●
●

●● ●●

●

●
●

● ●●
●●

● ●●● ●

●
●●

● ●● ●●●
● ●●● ●

●
●● ● ●

●

● ●● ●● ● ●●

●
●●

●

●
●● ●

●
●●

●

●
●

● ●● ●
● ● ●●● ●

●

● ●
●

●● ●●

●

●
●● ●●● ●● ● ●● ●

●

●●

●

●

●
●

●
● ●●●

●
●

●

● ●● ●●

●

●

●

● ● ●●●● ●● ●

●

●
●

●
●●● ●●

●
●● ●● ● ●● ●●●● ● ● ●● ●

●

●● ●
●

●
●

● ●● ●
●●

●
●

●●

●

●● ●
● ●●● ●● ●

●
●●● ● ●

●
●●

●
●

● ●● ●● ●● ●● ●
●

●

●● ●● ●●●

● ●
●

● ●●●●●
●

●

● ●

●
●

● ●

●
●

●
●

● ●●

●

●●● ●● ●● ●● ● ●●● ●

●

●
●

●● ●● ● ●
●●

●● ●

●●
●

●
●●

●
● ●

●● ●
●

●

●

● ●●● ●● ●● ●
●

●●● ●●● ●●●● ●
●

●●
●● ●

●

● ● ●●● ●● ● ●

●

● ● ●
●● ●

●
●●

●

● ●● ●
●

● ●
●

●●●

●

● ●

●

●
● ●●●

●
●

● ●●● ●

●
●

●●
●●

●
●

●●●

●

●
●

●●
●

●●● ● ●

●

●
●

●

●

● ● ●

●

● ●●● ●

●

●●

●

●

●

●
●

● ● ●●

●

●●
●

●●
●

● ●●
●

●
●

●
●

● ●

●

●
●●

● ● ●●●
●

●●

●

●

●
● ●●

●

● ●●
●

●●

●

●

●

●●●

●

●
●

● ●

●

●●● ●

●

●

●

●

●

●● ●
●

● ●●

●

● ● ●● ●
●

●●● ●

●

● ●
●

●
●

● ●●

●

●
●● ●● ●● ●●

●
●

● ●
● ●

● ●●

●
●

● ● ●
●

●● ●● ●
●

● ●● ● ●

●

●● ●●●●

●
●

● ●

●

●
● ● ●●● ●

●

● ●● ●

●

● ● ●
●

●
●

●●●
●

●

●
●

● ●
●

●
● ●

●

●

●

●●
● ●

●● ●●
●

●

●
●●

●
● ●

●

●●

●
●●

●

●

● ●● ● ●●

●●

●

●

●●

●

●
●● ● ●● ●

●

●●

●

●●●● ●●

●
●

● ●●●
●

●
●

●●●

●
●

●● ●

● ●● ●● ●
●

●

●
● ●

● ●● ●●● ●●● ●● ●● ●

●

●●
●

● ●● ● ●●●●

●

●● ● ●●
●

● ●●●
●

●● ●●

●

●

●

●● ●● ●● ●● ●● ●●● ●●● ● ●●●●●●

●

●
● ●● ● ●

●

●● ● ●

●

● ●●
●

●● ● ● ●●● ● ●●● ●
●

●● ●●
●

● ● ●●● ●●
●

●

●

● ●●● ●
●

●● ●●● ●●●

●

●●
●

● ●●
●

●●●

●

●●
●

●
●

●● ● ●
● ● ●●●● ●●● ●● ●●●● ●

● ●
● ●

●

● ●
● ●●

●
●● ●

●
●●●

●
● ●

●
● ●● ● ●● ●

●

● ●
● ●

● ●●

●
●

●●
●

●●
●

●

● ●● ●● ●● ● ●

●

●
●

●
●

● ●●● ● ●
●

● ● ● ●●
●

●●
●

● ●
●

●

●

● ●●● ●● ●● ●

●

●

●

● ●● ●●
●

● ●

●

●● ●● ●● ●● ● ●● ● ●●● ●
●

●●

●

● ●
●

●● ●

●

●● ●

●

● ●●

●

●
●

●

●● ●●
●

●

● ●● ●●
●

●● ●●
●

●

●
●●

● ●●
●

●● ● ●
●

●●●●● ● ●

●

●●

●

●● ● ●● ●● ●

●

●● ●●
●● ●

●

●●
●

●● ●● ●●

●

●

●

●●

●

●●
●

●

●
●

● ● ●●●● ● ●

●

●

●
●

●

●
●●● ●● ●● ●● ●●

●

●

●
●

●

●

●

●

●
●●

●
●

● ●●
●

● ●

●

●● ●
● ●

●
● ● ●● ●

●

●● ●●● ●
●

●
●

●

●

●

●

●

● ● ●

●

●● ● ●● ●● ●● ●● ● ●
●

●

● ●●
●

● ●

●
●

●
● ●● ●●

●
●● ●●

●
●●

●● ●●
●● ●●● ●

●

●● ●
●● ●●● ●

●

● ●● ●● ●
●

●● ● ●●● ● ●

●●
●●●●● ●●

● ● ●●
●●

●● ●● ●●● ●
●

●

●

●● ●
●●● ●

●
●●

●
●

●● ●● ●
●

●● ●

●

● ●
●

●

●

● ●● ●● ●● ●● ●
●

●●●
●

●

●● ●● ●

●

● ● ●
●

●●● ●
●

●
●

●

●
●●●● ● ●● ●

●

●●
●

● ●● ●

●

●●
●

●

● ●● ●
● ●●

●

●●
●

●

●

●

●●

● ●
●● ●●●

●
●● ●

● ●●● ●
●

●●●●● ● ● ●●

●
● ●●

● ●●

●

●● ●●

●

●●

●

●●
●

●

● ●● ● ● ●●

●

● ●● ●●●

●

●

●

●

●

● ●
●

● ●
●

●
●●

●
● ●● ●

●●
●

●
●

● ●● ● ●

●

●

●

●
●●

●

●

●
●

●● ● ●
●●

●

● ●●

●

●

●

●
●

●● ●
●

●

●

● ●
●

●● ● ●●

●
● ●

● ●
●●

●
●● ● ●●

● ●

●● ● ●●● ● ●

●●
● ●

●

● ●
●

●

●

●● ● ●● ●

●

●

●
● ●

●●●●● ●●

●

●
● ●

● ●●●
● ●

●● ●●●●

●

●● ●● ●●
●

●

● ● ●
●

●

●●●
● ●

●● ●
●

●● ● ●● ●
● ●

● ●● ● ●●● ●

●

●

●

●●

● ●

●●

●

●●

●

● ●
●

● ● ●●
● ●

●
●

●

●

● ●●
●

●

●
●

●
●

●● ●
●

●
● ●● ●●●

●

●

●

● ● ●

●

●
●

●

●
●

● ●●●
●

●

●● ●● ●

●
●

●● ●

●

●● ●
●

●●● ●● ● ● ●●● ●●
●

●

● ● ●● ●●●●
●

●
●

●

●

●
●●● ●● ● ●● ●● ●● ●

●
● ●

●
●

●
●

●

● ●● ●
●

●●● ● ●

●
● ●●● ●●

●
● ●

●
●● ●●●

●

● ●
●

●●● ●

●
●

●●● ●

●

●●
●

●● ● ●

●

●● ●
● ●● ●

● ● ●●●

●
●

●● ●● ●
●

●

●

●●
●●

●
●

●
●

● ●●●
● ●● ●● ●● ●● ● ●● ●●●

●
● ●● ●● ●●● ● ●● ●

●
●

●
●

● ●
●

●●●
●

●●●●● ●

●

●

●

●●●
●

●

●

●
●

●
●● ●

●
●●

●
●●● ●● ●●●

● ●

● ●
●

●● ● ● ●● ●● ●

● ●

● ●

●

● ●●

●

● ●●● ● ●

●●
●

●
●

● ●● ●●
●
●

●

●

●
●

●●●●●● ●

● ●

●

●
●

●● ●● ●●

● ●

●
● ●● ● ●● ●● ●●

●

● ●● ●● ● ●●

●

● ●●● ●●●

●

● ●●●

●

●
●

●

●

●

●

●
●

●
●

●

●● ●●● ●● ● ● ●

●
●

● ● ●

●

●●

●
●●

●

●

● ●● ●
●

● ●●

●

● ●●

●●

● ●●
●

●
●

● ●● ●●
●

●●

●

●● ●
●●

●●

●

●
●●● ●● ●●

●

● ●●●● ●●●

●

●

●

● ●●●

●

● ●

●

●
●

● ●
●

●

●

●● ● ●
●

●

● ●
●

●●●

●

●
●

●

●
●

●
● ●● ●●

●

●

●

●
●
● ●●● ●●●

● ●
●● ●● ●●● ●●

●
●

● ●● ●

●
●

● ●● ●●
● ●

● ●

●

● ● ●●●● ●

●

● ●●
●

●
●

●● ●●● ● ●● ●

●●

●●● ●● ●● ● ●●
●

●

●

●●● ●
●

●●
●

●● ● ●● ●
●

●

73

BIN 0

62

BIN 1

82

BIN 2

81

BIN 3

0

32

64

96

128

160

192

224

0 32 64 96 128 160 192 224 256
Packet Criticality (8b)

P
ac

ke
t D

el
ay

 (
C

yc
le

s)

(b) Hoplite-B

●●● ● ●●●

●

●
●● ●●●

●

●
●● ● ● ●●● ● ● ●● ● ●● ●

●

● ●
●

●● ●● ●●● ● ●● ●● ●
●

●● ●● ●
● ●

●●● ●●
● ●●● ●●● ● ●● ●● ●● ●● ●● ●

●
● ●●●●● ●● ●

●●●
●

● ● ●●● ● ● ●● ●● ●● ●● ●● ●● ● ●●●●● ●● ●● ●● ●●●
●

●● ●●● ●● ● ● ● ●● ●●

●

● ●●● ●●● ● ● ●●● ●
●

●● ● ●● ●● ●●● ●
● ●● ●

●
●

●
●●

●
● ● ●

●
●● ●● ● ●● ●●● ● ● ● ●●● ●●● ● ●● ●● ●●●● ● ●

●
● ● ●●● ●●

●

● ● ●●●● ●● ● ● ●● ● ●● ● ● ●● ●●●●

●

●
●

● ●●● ● ●●● ●
●

●●
●

●●●
● ●●●

●

●

●● ● ●● ●● ●●

●

●

●

● ●● ● ●

●

● ●● ● ●● ● ●● ●● ●● ● ●● ● ●●● ●

●

●
●● ●●● ● ●● ● ●

●
●● ●● ●●● ●● ●● ●● ●●

●
● ● ●●●● ●

●

●

● ● ●● ●●● ● ●● ●●● ● ●●● ●●●● ●●● ●● ● ● ●● ●●● ● ● ●●● ● ●● ●●

●

● ●
●

● ● ●●●● ●● ●●● ● ● ●● ●

●

●● ● ●● ●●●●●● ●●● ●● ●●
● ●

●
● ●● ● ●●●● ●●

●

●●
●

● ●●

●

● ● ●●
●

●● ●● ●●● ●● ●● ● ● ●●●

●

● ●● ●●● ●●● ●● ● ●● ●●
●

●● ● ●

●

●● ●● ●● ●● ●● ●● ●
●

●

● ● ● ●● ●●●
●

●● ●● ●●● ●● ●●● ● ● ●● ●

●

● ●● ●● ● ●●●● ● ●●●●● ●●●

●●
●●● ●● ●● ●●

●
● ●●● ●●● ●●● ●● ●

●

●● ●
●

● ●●
●

● ●●
●

● ● ● ● ●
●

●●●●● ●
● ●● ●●● ● ●●

●●
●●●●●● ● ● ●●●● ●● ●●● ●● ● ●●

●

● ●●
●

●●●● ● ●●● ● ●●●
● ●● ●

●
● ● ●●● ● ●● ●● ● ●● ● ●●● ● ● ●

●
● ●● ● ●●● ● ●●

●

●●●
●

● ●● ●● ●●●● ● ● ● ●● ●●● ●●●

●

●
●● ● ●●● ● ●● ●●

●

● ●● ●
●

● ●● ●● ●● ●●●
●

●
●

●
●

● ●● ● ●● ● ●
● ●

●● ● ●●●● ● ●●

●

● ●●● ●●● ●
●

●
●

●● ●● ●●●●
● ●● ●

● ●●●● ●●
●

● ●● ● ●● ●● ●● ●● ● ●● ●●● ●●●
●

●● ●
●

● ●●● ●●
●

● ● ● ●
●

●

●●● ●●● ●●● ● ●●●●●
●

●
●

●● ●●● ● ●●● ●
●

●
●●

●● ●● ● ●●● ● ●● ●●●● ●

●

●●● ●●●● ●● ●●●● ● ●

●

●● ● ● ●●● ●● ●● ●● ●●

●

●● ●●

●

● ●● ●● ●● ●● ●●● ●

●

● ●●
●

●●● ●
●

● ●
●

●
●

● ●●● ●● ● ●●●
●

● ●● ● ● ●● ●
●

● ●● ●● ●● ● ●● ● ● ●●● ●●● ●● ● ●●●● ●● ● ●●● ●● ● ●● ●● ● ●●● ●●● ●●● ● ●
●

●
●

●● ●●● ● ●● ●●●● ● ● ●● ●● ●●● ●● ●● ●● ● ●●● ● ●●● ●●

●

●●●
●● ●● ●

●
●● ●

● ●
● ●●● ●● ● ●● ●●

●
● ●●●● ●● ●● ● ●●● ● ● ●●

●
●● ●●● ●●● ●● ● ● ●

●
● ●● ●●● ●● ●●●

●
● ●● ● ● ●● ●

● ●● ●● ●

●

●●● ●●● ●● ●● ●● ●

●

●● ● ●●●● ●

●

● ●● ● ●● ● ●● ● ●
●

● ●●● ●● ● ● ●● ●● ●● ●● ●●●● ●● ●
●

●●● ● ● ●● ●●
●

●● ●●● ●●● ●●● ●● ●●● ●●● ●● ●● ●
●

●●●●● ●●●● ●● ● ●● ●● ● ●● ●
●

● ●● ●●
●

●
●

● ●●●

●

●● ●
● ● ●

●

● ●● ●● ●● ●● ● ● ●● ●● ●●● ●● ●●● ●
●

●● ●●● ●
●

●● ●
● ●● ● ●●

●

●●
●

●● ●●● ● ●●●● ●●

●

●● ● ●●● ●● ● ●●● ●●●
●

● ● ●
●

●● ●
● ●●

● ●● ●● ●● ● ●● ●●● ● ● ●●● ●●●●● ●● ●● ●

●

● ●● ●●● ●●
● ● ●● ●●● ● ●

●
●● ●●

●

●● ●

●

●●● ● ●● ●●●● ●●● ●● ●●●● ●● ●●●● ● ●●● ● ● ●● ●● ● ●● ●●● ●● ●● ●●●● ●● ●● ●● ●● ●●● ● ●●

●

●● ●● ●● ●● ●● ●●

●

● ●● ●●● ●● ●●●●
●

● ●●● ●● ●●● ●● ● ● ●● ●●● ● ●
●

● ●●● ● ●●●

●

●● ●●

●

●● ●● ●● ●●

●

●● ●●
●

●● ● ●● ●●● ● ● ●● ●●
●

● ●● ● ●●● ●

●

●●●
●
● ● ●● ●● ●●

●
●●● ●● ● ●●● ●● ●● ● ●

●
● ● ●● ● ●●

●

●●●
●

● ● ●●● ●● ● ●● ●●
●

● ●● ● ●
●

● ●
●

●● ●
●

● ●● ●● ●● ●● ●●●● ●

●

●● ●

●

●
● ● ●

●
●

●
●●● ●● ●● ●

●● ●● ● ●●

●
● ● ●●●●● ●● ● ●

●
●● ●● ●●● ● ● ● ● ●● ● ●

●
● ●● ● ● ●● ● ●●●● ● ●●

●
● ●● ●●●● ●●● ● ● ●

●
●●●● ● ● ●● ● ●● ●●●●● ●

●
●

●
● ●● ● ●●● ● ● ●●

●
●● ●● ●● ●●● ●● ●● ●● ●● ●●●● ●● ●

●
● ●● ●

●

●
●

●● ●● ●
●

●●
●

● ●
●
● ● ●

●
● ●●

●
●●●

●
●

●● ● ●● ●●● ●● ● ●● ●● ●●● ●●● ●●● ●● ● ●●●● ● ●●●●●● ● ●● ● ●● ●● ●●

●

●●●

●

●●

●

●● ●● ●● ● ●●●
●

●● ●

●

● ● ● ●●● ●● ●● ●
●

●
●

●●
●

●● ●● ● ●●● ● ●●
●● ● ● ●● ●●● ●● ●● ●● ●● ●●●● ●● ●●● ● ●● ● ●● ● ●●● ● ● ●●

●
●● ● ●

●

●● ●

●
●

● ● ●● ●● ● ●●● ●● ●

●

●●● ●●●
●

●
●
● ●

●
● ● ● ●● ● ●● ●● ● ●● ● ●●● ● ●

●
●● ●●● ●●●● ●● ●

●●
●● ●

●
●● ●

●
●●●● ● ● ●● ●● ●● ● ●● ●●

●

● ●● ●●● ● ●● ●● ●●
●

● ●● ● ●● ●● ●
●●● ● ●●● ●●●● ●● ●

●
● ●● ●● ●●● ●● ● ●●●● ● ● ●●●●

●

● ●● ●● ● ● ●●● ●● ●●● ●●●

●

● ●● ●● ●● ●
●

●●● ●●● ●● ●● ●●●● ● ●● ● ●
●

● ● ●●● ●● ●●●
●

● ●●● ●●
●

●● ●●●
●●

● ●● ●● ●● ●● ● ● ●● ●● ● ●● ● ●

●

●● ●●● ●● ●● ● ●●● ●● ●
●●

●●●

●

●

● ● ● ● ●●●● ●● ● ●● ●●
●

●● ●● ●●●● ●●● ●● ●● ●
● ● ●●● ● ●●● ●● ●

● ● ●●●
●

● ●● ●●●● ●● ●● ●● ●●
●

●

●● ●
●

●●● ●●

●

● ●● ●

●
●

● ●●● ● ●●● ●● ● ●●● ● ●●
●

●● ●● ●●● ●

●

●●● ●●●

●

●●●● ●●●
●

●● ● ● ●

●

● ● ●●●●●● ● ●● ●● ●●● ●●

●

●● ●●●
●● ●● ●

●

● ●● ●●● ●● ●
●● ● ●● ●● ●● ●● ●● ●●● ● ●

●
●●

●
●● ●●

●
●

●

●
● ●● ●●●●●●● ● ●● ●● ● ●●

●
●●● ●●● ●●● ●● ●● ●● ●● ●

●
●● ●●● ● ●● ●●● ●●● ●● ●●●● ●● ●●

●

● ●●●

●

●● ● ● ●● ●●

●

●

●

●● ●
●

● ● ●● ●● ●● ● ●●● ● ●●

●

● ●● ●●●● ● ●●●● ● ●● ● ● ●● ● ● ●●●●●

●
● ●● ● ● ●●

●
●● ● ●●

●

● ●● ● ●●
●

● ●●●● ●● ●● ●● ●● ● ● ●●● ●● ●●● ● ●● ● ●●● ●

●

●● ●● ●●● ●● ●● ●● ●●● ●
●● ●● ●● ●●● ● ●

●

●●

●

● ●

●

●
●

●
●●● ● ●● ● ●●●●

●

● ●● ●

●

●
●

●●

●

●● ●●● ●● ●

●

● ●●

●

●

●

●●

●

● ●● ●●
●

●●● ●
●

●● ● ●● ● ●● ●● ●●●
●

●● ● ● ●● ●
●

●● ● ●● ● ●
●

●●● ●● ●● ● ● ●● ●● ● ●
●

● ●● ● ●●● ● ●● ● ●●● ●

●

●●
●

● ●

●

●
●

●●

●

● ● ●●

●

●●●● ●● ●●● ●●●
●●● ● ● ●●

●
●●●●

●
●●● ●●●●● ●●

●
●●

●
●● ● ● ●●

●
●● ●●●●● ●

●●

● ●● ●●●● ●● ● ●
●

● ● ●● ●● ●●● ●● ●● ●
●

● ●● ●● ●

●

●●● ● ●
●

●● ● ●● ● ●●● ●● ●●● ●● ●● ● ●● ● ● ● ●
●

●● ●●● ●● ●● ●
●● ●●●● ● ●●● ●● ● ●●● ●● ●● ● ● ●●● ●●● ● ● ● ●●●● ● ● ●●● ● ●● ●●● ● ●●●● ● ●●●● ● ●● ● ●●●● ●●

●

●● ●● ● ●● ●●
●● ●● ● ●● ●

●
● ●● ●● ●●● ●● ● ● ●●● ●●

●
●

●●● ●● ●● ●● ●●●● ●● ●● ●●●● ● ●● ●

●

● ●
●

●●● ● ●

●

●●● ● ●● ● ●●● ● ●●●● ●● ●●●● ● ● ●●●
●●● ● ●

●
●●● ●●● ●● ●●

●

● ● ●

●

●●

●

●● ● ● ●● ● ● ●

●

●●● ● ● ●●
●

●● ● ●● ● ● ●●●●●● ● ●● ● ●● ●
●

●
●

●●●● ●● ●● ●● ●● ●●●● ●● ●● ●●●● ●
●● ● ●●● ●● ●●● ● ●● ●●

●

● ● ●●● ● ●● ● ●●● ●●● ● ●● ● ● ●●● ●
●

●●● ● ●●●● ●●● ●● ● ●●

●

● ●● ●● ●● ●●●●● ●●●● ●● ●

●

● ● ● ●● ●● ● ●●

●

●●●

●

● ●●

●

●
● ●●

●

●● ●● ●●●● ●
●

● ● ● ●●●● ●● ●●

●

●● ●● ●● ● ●

●

●●● ● ● ●● ●●●

●

● ●
●

● ●●● ●●
●

●
● ● ● ●●● ●●● ●

●
●● ●● ●

● ● ●●

●

●● ●● ●●●● ●● ● ●●●● ●● ●● ●
●

●●● ● ● ●●●● ●● ●●● ●●● ● ● ●● ●●
●

●
●

● ●●● ●● ●● ● ●●●● ● ●

●

●● ● ●● ●●● ● ●● ●● ● ● ●● ● ● ●● ● ●●● ● ●●● ● ● ●●
●

● ● ● ●● ●● ●●
●

● ●● ●● ●

●●

●● ● ●● ●● ● ●● ●● ●●● ●●● ●
●

●

● ● ●●●

●

●●●● ●●● ●●● ● ● ● ●● ●●●●
● ●

●
●● ● ●

●

●

●

● ● ●● ●● ● ●● ●● ●● ●● ●●●● ●● ● ●

●

● ●●● ●
●

● ●●● ●●● ●● ●
●

●● ● ●
●

●● ●●●● ●● ●
●

● ●● ● ●●●● ● ●● ●●

●

●●● ● ●●
●

● ●●● ●● ● ● ●
●

●● ●● ●● ● ●●
●

●

● ●● ●● ●● ●●●● ●●
●

●● ●● ●● ●● ●●● ●●● ● ● ●● ●●●● ● ●● ● ●●● ●●● ●●● ●● ● ●●● ●● ● ●● ● ●●● ● ●● ● ●●● ●● ●
●

● ●●● ●●● ● ● ● ●● ●● ●● ● ●● ●●● ●● ●● ● ●●● ●● ●●● ● ●● ●●●● ●● ●●● ● ●●● ● ●●● ●● ●●● ●●
●

● ●● ●● ●●● ●● ●●
●

●● ●● ●● ● ●● ●●● ●●●●●● ●● ● ●● ● ●●●● ●● ● ●● ●●●● ● ●
●● ●● ●●● ●

●

●

●

●

●
● ●●●

●
● ●●●●● ●●● ●● ●● ● ●●● ● ●

●
●● ●● ●● ●●●

●

●●●● ● ●● ●● ●●●● ●● ●● ●● ●
● ●●● ●●● ● ● ●● ●

●

●●●
● ●●

●
● ●● ● ● ●●● ● ●

●

●●
●

● ●●●
●

●
●● ●●●● ● ●● ●

●
●

●

● ●●● ● ●● ●● ●

●

●
●

● ●● ● ●

●

●● ●●●● ● ●●●● ●●

●

● ●● ●
●

●●● ●● ● ●● ●● ●● ● ● ●● ●● ●

●

●
●

● ●●
●

● ●● ●●● ●●● ●●● ●●● ●●● ●●● ●● ●● ● ● ● ●● ●● ● ●●●●● ●

●

●● ● ●
● ● ● ●●

●

●

●● ●●● ● ● ●●

●

● ●● ● ●
●

●● ●
●

●
●

● ●●●● ●● ● ●● ● ● ●●● ●●● ●●

●

●●● ● ●●●●● ● ● ●●●● ●●● ● ●
●

● ●● ●●● ●●● ●●● ●●●

●

●
● ● ●●● ●●● ● ●●●● ● ●● ● ●●

●
● ●● ● ● ●● ● ●● ● ●

●

●●●
●

● ● ●●●● ●
●

●● ● ● ●

●

● ●● ●●● ●●●
●

●●
●

●

● ● ●●●● ●● ● ●

●

●●●●● ●● ● ●● ●●● ●●●● ● ●● ●● ● ●●●●●● ●● ●● ●● ●● ●
●

● ●●● ● ● ●●● ●

●
● ●● ●●● ●● ● ●● ● ●● ●●● ●● ● ●● ●● ● ●● ●●●●

●

● ●● ● ●●● ●● ●●● ● ●● ●●● ●●
●

●● ●● ●●●
●

●●● ● ●● ●● ●● ●● ●● ●●●● ●● ● ●● ●● ● ●
●

● ●● ●● ●
●

● ●●●● ●● ●●● ●● ●●● ●●

●

●● ● ●● ● ●● ●●● ● ● ●● ●● ● ●●●● ●● ●●

●

●
●

●●● ●● ● ●●● ●● ● ●

●

●

● ●● ●● ●● ●●● ●
●

●

●●

●

● ●●●●● ● ●● ●●● ●

●

●●
● ● ●● ●● ●

●
●

● ● ●● ●●● ●● ●● ●●●● ●●

●

●● ●●● ●● ●●● ●● ● ●●●● ● ● ● ●● ●● ●●● ● ● ●● ●

●

●● ●● ● ●● ● ●● ●●● ● ●● ● ●●● ●● ●● ●●● ● ●●● ●● ●● ●● ● ●
●

●● ●●

●
● ● ●●●● ● ● ●●●●● ●● ●● ●● ●

●
●●

●

● ●● ● ●●● ●●● ●● ● ●●

●

●● ● ●
●

● ●

●

● ●● ● ●●● ● ●●● ● ●● ●●●●●

●

● ●● ● ●● ●●
●

● ●● ●●● ●●● ●●● ●●
●

● ●

●

● ●●●● ●● ●● ●●●
●

●● ●● ●●●● ●● ●●● ● ● ●●● ●●●
● ●●

●● ● ●●● ●
●

● ● ●●● ●●●● ●● ●● ●● ●
●

● ● ● ●
●

●
●

● ● ●● ●● ● ●● ● ●●● ●
●

● ●
●

●●● ● ●● ● ●●
●

●● ● ● ●●●● ●●●● ●● ● ●●● ●● ● ●
●

● ●●● ●● ●●

●

●●● ● ●● ●●● ● ● ●● ●●
●

● ●●●●
●●

● ●●● ●● ●●●
●

●●
● ●● ●● ●● ●●●● ●●● ● ●● ●● ● ●

●
● ● ●● ●● ●● ●●

●
●● ●● ●●● ●

●
●●●

●
●

●●
●●● ●● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ●● ●●●

●
●● ●●● ● ●● ●● ● ● ● ● ●

●
●● ●●●● ●● ●● ●● ●● ●● ●●●

●

●

●

●●●● ● ●●●● ●

●

●● ● ● ●●
●

●● ● ●●● ● ● ●●
●

●● ● ●●●● ●● ●
● ●

●

●● ●● ●●●● ●● ●●● ● ●●● ●●● ● ●●

●

●● ● ●

●

●●● ●● ● ●● ●● ● ●● ●● ● ●●●● ● ●● ●● ● ● ●● ●●● ●
●

●● ●●
●

● ●●●

●
● ●

●● ● ●●● ●
● ● ●● ● ●●● ●●●

●

●●●
● ●● ●● ● ●●●●

●●
● ●●●● ●● ●

●

●● ●● ●● ●●● ● ● ●● ●●● ●● ●●● ●●● ●●●● ● ● ●● ●●
●

●● ●● ●●
●

●
●

●
● ●● ●●● ●● ●●● ●● ●●●●●●● ●●●●●●

●

●● ●●● ● ●● ●● ●●● ● ● ● ●● ●●
●

●●● ● ●●●● ● ●● ●●●● ●
●

●● ●● ●● ● ●●●● ●● ● ●● ● ● ●●● ●●●● ●●● ● ●
●

● ● ● ●●● ●● ● ●● ●

●

●●
●

●● ●●
●

●●● ●●●● ●● ●●
●

● ●● ●● ●●

●

● ●●●● ●● ● ●●

●

●
●

●●

●

● ●
●

●● ●● ● ●● ●●● ●
●

●● ●●● ●● ●●

●

●
●

●● ●● ● ● ●●● ●●●●● ●● ●● ● ●● ● ●● ● ●●● ● ●●● ● ● ●●●●●●●
●

●●●● ●● ● ● ●●
●

● ●● ●●● ● ●●●●● ●

●

● ●● ●● ● ●●
●

●●● ●●●● ●● ●●● ●●●● ●●●● ●●●●● ●● ●●●● ● ●●●● ●●● ● ●
●

● ●● ●● ● ●● ● ●● ● ●● ●●● ●●● ●●● ●●● ●●●● ●●●● ● ● ●●● ●● ●● ●●● ●● ●● ● ●●
●

●
●

●

●●

●

●●● ● ●●● ●● ●●● ●●

●

●● ●● ●●

●

●● ●●● ●● ● ●● ●●●● ● ●● ● ●
●

● ●

●

●
●

●●● ●●● ●● ● ●● ● ●●
●●● ● ●●●●●

●

●● ●
●

● ● ● ●● ●● ●●● ● ●●●● ●●● ●
●

●● ●● ●● ● ●● ●●● ●● ●

●

● ● ●

●

●
●
● ●● ●● ●● ●● ●● ●●● ●● ● ●● ●● ●● ●● ●● ●● ●

●

●●
●

● ●●●● ●
●

● ●

●

● ●●
●

●● ●

●

●● ● ● ●●● ● ●● ●● ●●● ●●●
● ●●● ●● ●●● ●● ●● ●● ●●● ● ● ●
●

● ●● ● ● ●● ●

●

●● ●●●
●

● ●● ●●●● ●● ● ●● ●●●
●

●● ●● ●
●

● ●●● ●● ●● ● ●
●

●

●

● ●●● ●●●
●

● ●● ●● ● ● ●● ●●● ●●● ● ●●● ●●● ● ●●● ●● ●● ● ●●● ● ●● ●● ● ●●● ●

●

● ●● ●● ●● ● ●● ●●● ● ●●
●

●● ● ●●●●● ●● ● ●●● ●● ●● ●● ●●● ●● ●●● ●
●● ● ● ●●●● ● ● ●●● ●●● ●● ●● ●● ●●● ● ●●● ●● ● ●

●
●

● ● ● ●● ● ●● ●● ● ● ●● ●●● ● ● ●●●●
●

● ●● ● ●● ●●● ●● ●●

●

●●● ● ●● ●
●

●● ● ●

●

●● ●● ●● ●●● ●● ●● ●● ●● ●
●

●● ●
●

●
●

● ●● ●●● ●● ●●● ●●●●
●

● ●●●

●

● ● ● ●●● ● ● ● ●● ● ● ●●●● ● ●●●● ● ●● ●● ● ●●●●● ●● ●● ●●●● ● ● ●● ●
●

●●● ●● ●● ● ● ●●
● ●

●●● ●●
●

●● ●●● ●● ●

●

● ●●● ● ●● ●● ●● ●●● ● ●●● ●●●● ●● ●●●
●

●● ●● ●● ●
●

●● ● ●●● ● ●● ●●● ●●● ● ●●
●

●● ●●●● ●
●● ●● ● ●

●
●

●
●

● ●

●

● ●● ● ●●

●

●● ●●●

●

● ●●
●

● ●● ● ●●● ● ●●● ● ●

●

●●●● ●●

●

● ●● ●● ● ● ●● ●●● ● ●●●● ●● ● ●●● ● ●● ●

●

●● ●●

●

● ●● ●
●

●● ● ●●● ● ●● ●● ●● ●● ●●●● ●●● ●● ●●

●

●● ●●● ●● ●● ●● ●● ● ● ●● ● ●● ●●● ●● ●● ●
●

●● ●●● ● ●● ● ●
● ●●● ●
●

● ●
●

●
● ●

● ●● ● ●●●

●

● ●●
●● ● ● ●● ●●● ●●● ● ●●● ● ●●● ●●● ● ● ●●●

●
●● ●● ●● ●● ● ● ●● ●●● ●●

● ● ●● ● ●● ●● ●● ● ●● ●●● ●● ●●● ●● ●●● ●● ●● ●● ● ●

●

● ● ● ●●● ● ●● ●● ● ● ●● ●● ●● ●● ● ●● ● ●● ●●● ●● ●● ●● ● ●●●●● ● ● ● ●● ●
●

●● ●● ●●●
●●

● ●
●

●
●

● ●●●● ●
● ● ● ●● ● ●

●

●●
● ●● ●●● ●● ● ●●●● ● ●● ●● ●●● ● ●● ● ●● ● ●● ●●● ●● ●●● ●● ●●● ●●

●
● ●● ●

●

●●● ●● ●● ●
●

●● ● ●● ● ● ●● ● ● ●

●

●

●

●●● ●● ●● ●●● ●● ●● ●●
●

●● ●●● ●● ●
●

●
● ●● ● ●● ●● ● ● ●●●

●
●

●
● ● ●●●●●

●
●●●● ●●● ●●● ● ●● ●

●
● ●●● ●● ● ●● ●●● ●●●● ● ●● ●

●
●

●

●●● ● ●● ● ●●●

●

●●● ● ●●●
●

●
●

●●● ● ●● ●● ● ●● ●

●

●● ● ●●● ●● ● ●● ● ●● ●
●

● ●● ●● ● ● ● ●

●

● ●● ●●● ● ● ●● ●● ● ●● ●● ●
●●●● ● ●● ● ● ●● ● ●●● ●● ● ●● ●●● ●● ●● ●●●

●
●● ●

●
● ●● ● ●

●

●●● ●● ●● ●● ●●●● ●●● ●●● ●●● ●
●

● ●● ●● ●● ●●●●
●

● ●

●

●●● ● ●
●

●

●

●●● ● ●●● ● ●●●● ●● ●●●
●●

● ● ● ●● ● ●● ●● ●● ●
●

●● ●● ● ●●

●

● ●● ●●● ●●●● ●● ●● ●●● ●● ●●● ●●
●

●●● ● ● ●● ● ●● ●● ● ● ●●●
●

● ●● ● ● ●● ●● ●●●● ●● ●●●● ●● ● ●●●
● ● ● ●● ●● ●● ●● ● ●● ●● ●

●

● ● ●● ●● ● ● ●●● ● ● ●● ● ●●
●

●● ●●●●● ●●

●

●● ● ●● ●●● ●● ● ●● ●● ●● ● ●
●

●● ●● ● ●●

●

● ●● ● ●●● ● ● ●●● ●● ● ● ●● ● ●● ● ●●
●

● ●● ●● ● ●●

●

●
●

●●● ●● ●
●

●● ● ●●● ●●● ●● ●● ●●●

●

● ●●

●

●
●

●● ●●● ● ●● ●●

●

●

●● ●●

●

●● ●●● ●
● ● ●● ●● ●● ● ● ●● ● ●

●

●
●

● ●● ●●

●●

●
● ●

●●

●

●

●

●
●

●

●
●

● ●● ● ●●● ●● ● ●● ●●●
●

● ●●

●

● ● ●● ● ● ● ●

●

●●
●

● ●
●

●
●●

●● ● ●● ● ●●● ● ●● ●●

●

● ●● ● ● ●●● ● ●●● ●● ●●●
●

●● ●● ●

●

●● ●●● ●● ● ●● ●● ●●●● ●●● ●●
●

●● ● ●● ●●● ● ●●●
●● ●●● ● ●

●
●

●●●●●● ● ● ●●● ●●●● ●
●● ● ●

●

●●●

●

●

●
● ● ● ●● ●●● ●●● ●

●

●● ●●● ●●● ●●●
●●

●

●● ●
●

●● ●● ●●● ● ●●● ●
●

● ●●●

●

● ●● ●●
●

●● ● ●● ●● ●● ● ●●●●
●

● ●
●

● ● ●●● ●●● ●

●

●● ● ●●

●

●● ●●

●

● ●●● ●●● ●● ●● ●●● ●●● ●● ●
●

● ●● ● ●●
●

●● ●● ●●● ●● ●●● ● ●● ●●● ●●● ● ●●● ●●●●● ● ●
●

●●●● ● ● ●● ●●●●
●

● ●●●●● ●● ●● ●● ●●● ●● ●● ● ●● ●●●

●

● ● ●●

●

●●● ●● ●● ●●●●● ●●● ● ●● ●● ● ● ●●

●

●
●● ●● ● ●●● ●

●

●
●

● ●●●

●

● ●● ●● ●●● ●●●
●

●
● ●● ●● ● ●●●● ●●● ●

●● ●
●

● ●● ●●● ●● ● ●
●

●

● ●●● ●●● ● ●● ●●●● ● ●● ●● ●
●

●● ●● ● ●●● ●●● ●●●
●

● ●● ● ●●

●

●● ●● ●● ● ● ●● ●● ●●● ●●● ●● ●●●
●

●

●

●● ●● ● ●●●
●

● ● ●● ● ●● ●● ●
●

● ● ●● ● ●● ●● ●●●● ● ● ● ●●
●

●●● ●● ● ●
● ●● ●●

● ●●●● ● ●●

●

●● ●● ●● ● ●●● ● ● ●● ●● ●●●

●

●
●●

● ● ●● ●● ●● ●●
●

●●● ●● ●●● ●●●● ● ●●● ●● ●
●

● ●●
●

● ●●●

●

●● ●●
●

●● ● ● ●● ●
●

● ●
●

● ●● ● ● ● ●● ●

●

●● ●●
●● ●● ● ●● ●●● ●● ●

● ●● ●
●

●● ●●● ●

●

●● ●●● ●●

●
●

● ●● ●● ● ●●●● ● ●● ●● ●● ●● ●
●

●

●

●

● ●● ●●● ● ●●●●●●● ●● ● ● ●● ●● ●● ●

●
●

● ●●● ●●●

●

●● ● ●●
●

●

●

●●●● ● ●●●●● ●● ● ●●● ●● ●● ●●● ●●● ●● ● ●●●●● ●

●

● ● ●● ● ●●●● ●● ●● ●● ●● ● ●● ●

●

●● ● ●●● ●● ●● ●
●●

●
●●● ●

●

● ●● ●●●● ● ●● ●●●●●●● ●● ●●● ●●● ●●● ●●●● ● ●● ●● ● ●●●● ●● ●●● ● ●
●

● ●● ● ●●●●● ● ●● ●● ●● ● ●● ●● ● ●● ●● ●●● ●● ●●● ●

●

● ● ●● ●●●●●
●

●● ●● ●●● ●● ●●● ●●● ●● ●● ●●
●

●●● ● ●●● ●●● ●●●● ●●● ●●● ●● ●● ●●● ●● ●

●

● ●● ●
●

●● ● ●● ● ●●● ● ●●● ● ●●
●

●●●●● ●● ●●● ● ●●● ● ●● ●● ●● ● ●● ●●● ●●●● ●● ●● ●● ● ●● ● ●

●

● ●● ●●
●

●
●

● ●●● ● ●●●● ● ●●
●

● ● ●● ●● ●● ●●● ●● ●●●● ●●● ●

●
●●

●

●

●
●

● ●● ● ●●●● ●●●
●●●●● ●● ●● ●● ●● ●● ● ●●● ●●

●
●● ●

●

● ●●● ●● ●●● ●●● ● ●●● ●●● ● ● ●● ●
●●

● ●● ●●●
●● ●●

●
●●● ●● ●

●
● ●● ●● ● ● ● ●●● ● ●● ●● ●● ●●●

●

●●●● ●● ●● ● ● ●●● ● ●● ● ●●● ●● ● ●●●
●

● ● ●

●

●● ●
● ● ●● ● ● ●●● ●

●
●

● ●
●

●

●

● ●● ● ●●● ● ●● ●●● ● ●●● ●● ●● ●● ●●

●

● ●● ● ●● ●● ●●● ●●● ● ● ●● ●●● ● ●● ● ●● ●● ●●●●● ●● ●● ● ●
● ●

●●
●

● ● ●●● ●●
●● ●

●

●

●● ●● ●● ●● ● ●● ● ● ●●● ● ●● ● ●● ● ●●● ●● ●●● ●● ●

●

● ● ●● ●

●

●● ● ●●●● ● ●● ●●● ● ●● ●● ●●● ●● ●●● ●●
●

●●● ●● ● ●●● ● ●● ● ●● ●● ● ●
●

● ●● ● ●
●

●● ●● ●●● ●● ●●● ● ● ●● ●
●

●● ●● ● ●● ● ●● ●● ●●
●● ● ●●● ●● ●

●
●●● ●● ●● ●●● ●

●
● ●● ●●●●

● ●●
●

● ●● ● ●● ●●● ●● ●● ●

●
●● ● ●● ● ●●● ● ●●●

●

●● ●
●

● ●

●

●● ● ●●● ●● ● ● ● ●● ●●● ● ●●

●

●● ●● ●●●
●

●● ●● ●●
●

●● ● ●●● ● ●● ● ●●● ●● ●●●● ●● ●● ● ● ●●● ●

●

●
●● ●●● ●●● ●● ●●

●

● ●●
● ●

●
●●

●

●● ● ● ●● ●● ●● ●●● ●● ●●●

●

● ●● ● ● ●● ● ●● ●●●● ●● ● ●●● ●●● ● ●● ● ●● ●●● ●●● ●● ●● ●● ● ●● ● ●● ●● ●●● ●●● ●● ●
● ● ●●●● ● ●●●●● ●●●●● ●● ●●● ● ●●● ●● ● ● ●●●● ● ●● ●●

●
● ●● ● ● ●●● ●● ● ●● ●● ●● ●●

●
●●● ● ●●● ● ● ●

●
●● ●● ●● ●●

● ● ● ● ●● ●● ●● ● ●● ● ●●●● ●●● ● ●● ●● ● ●● ●●●● ●●
●● ● ●● ●● ●● ●●●● ● ● ●●

●

●
●

●●● ●●● ● ●● ●● ● ● ●●●

●

● ●●

●

● ●

●

● ●●● ● ●● ●●● ● ●● ●

●

●● ●● ●● ●● ●●

●

● ●●●● ●● ●●● ● ● ● ●●● ●● ● ●●●● ● ●●●● ● ● ●

●

● ●● ●● ●● ● ● ●●● ●● ● ● ●● ●●● ● ●●● ●● ●● ●●
●

● ● ●●● ●● ●● ●●●
●● ●●● ●

●

●● ● ● ●● ●● ● ●● ● ●●
●

● ●● ●●
●

● ●
●

●● ●●● ● ● ● ● ●● ● ●
●

●● ●
●●

●● ●●
●

● ●● ● ●● ●● ● ● ● ●● ●●● ●● ●

●

● ● ●● ●● ●●●● ●

●
●

● ●● ●●●●
●

●
● ● ●●

●

● ● ● ●●● ● ● ●●● ● ●
●

●●●●● ●● ●●● ●●
●

● ●● ●● ● ●

●

●● ●● ●
●

●● ●●●● ● ●● ●●●●
● ●● ●● ● ●● ● ●● ● ●

●

● ● ●● ● ●● ●●● ●● ● ●●● ●
●

● ●●

●

● ●●● ●●● ●●●● ●●● ●●● ●● ●● ●

●
●

●● ●● ●●● ●● ●

●

● ● ● ●●●● ● ● ●● ● ●● ●
● ●

●●●● ● ●●
●

●● ●● ●●● ●● ●● ● ●● ●●●●● ●

●

● ● ● ●● ● ●●● ●●● ●●
●

●
● ●●● ●● ●● ● ●● ●●●●

●

● ● ●●● ●● ● ●●●●
●

● ● ●● ●●●● ●
●

●●● ● ● ●● ● ●● ●● ●● ●● ●● ●●● ●
●

●● ●● ●● ● ●●●●
●

●●●

●

● ●● ●● ● ●●● ● ●●● ●

●

● ● ●●● ●● ● ● ●●● ●
●●

●● ●●●

●

● ● ●● ● ● ●● ●●●● ●●● ●● ●●● ●●

●

●● ●●● ●● ●● ● ●●●● ●● ● ●●● ● ●●● ● ●● ●●

●

● ●
●

● ●
●

●● ● ●●● ● ●●● ● ●● ● ●●●●

●

● ●● ●
●

●

●

●●● ● ●

●

●●● ● ●●
●
● ● ● ●● ●● ●● ●● ● ●●● ● ●

●
●●● ●● ● ●● ●● ● ● ●● ●●● ● ●●● ● ●●● ●● ●● ●●●●●● ● ●●● ●●● ● ●

●
● ●● ● ● ●●●● ● ●●● ● ● ●● ●●● ● ●● ●●●● ●● ●

●
● ●● ●● ●● ● ● ●●●● ●●

●
● ●● ● ●● ●● ●● ●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ● ● ●● ●●● ● ●● ● ●● ●● ● ●●● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ● ●●● ● ●● ●● ● ●

●

● ●● ●●●●● ●
●

● ●● ●●
●

● ●● ●● ● ●●
● ●●●●● ●

●
●●●●●● ● ● ●●

●

●●● ●●● ●

●

● ●
●

●●● ● ●●● ● ●● ●● ●

●

●● ● ●● ●●● ●● ●● ●● ●● ● ●● ● ● ●● ●● ● ●●● ●● ●● ●● ●●● ● ●

●

●

●
●

● ●● ●●●

●

● ●●● ●● ●● ●●
●

●● ●● ●●● ●● ●● ● ●●●●● ●●● ●●● ● ●●● ●●●● ●● ●●● ● ●● ●●● ●● ●●●● ● ●● ●● ●●●● ●● ●

●

● ●● ●● ●●●●● ●●● ● ●●● ●●●● ● ●● ●
●

●●●● ● ●●●
●

●●● ●● ●● ● ●● ● ●●●
●

● ● ●● ●●● ● ●●
●●

● ●● ● ●

●

●●●●●●● ● ●●● ●●● ●●● ●●● ●●●●● ●●● ● ●● ●●● ●●
●

●●● ● ●● ●● ●●● ●● ●● ●● ● ●●●●● ● ● ● ●● ●●●● ●● ● ●●● ●●● ●
●

●●● ●●
●

●●● ●●● ● ●●●● ●● ●●●● ● ●●

●

●●● ●●● ●● ●● ●● ●●● ●● ●●●● ●●● ●●●

●

● ●● ●● ●● ● ●● ● ●●●
● ● ●

●

● ● ● ●● ●●●●●

●

●●

●

●● ● ● ● ●● ●● ●●●
●

●

●

● ●● ●● ●
●

●● ● ● ●● ● ●

●

●● ●●●●●● ●●
● ●● ●● ●●

●
●● ●● ●● ● ●● ●

●

● ● ● ●● ●● ● ●● ●● ● ● ●

●

●● ●●● ●
●●

●
●

●● ●●● ● ●●●● ● ● ●● ● ●● ●● ●● ● ●●●● ● ●● ●● ● ●●● ●● ● ●
● ● ● ●●● ●● ●

●

●●● ● ●●●● ●

●

●
●●

●●● ●●● ●● ●● ● ●●● ●● ●● ●● ● ●●● ●● ●● ●●●●●● ●● ●● ●● ●●● ●●●● ●●
●

● ●
●

● ●●● ●●● ●
●

●●●● ● ●● ●
●

●● ●● ●● ●● ●
●

●● ●
●

● ●●

●

●

● ●●●● ●●● ●● ●●
● ● ●●●●

●
●●● ●● ●●●● ●● ●● ● ●●● ●●●● ● ●●●●● ●

●

●● ● ● ●●

●

● ●● ● ●● ● ●●● ●● ●● ●●● ●●● ● ●●● ● ●● ●●●●● ●●
●

● ●●● ● ●● ●● ● ●● ●● ●● ●●● ● ● ●● ●●
●

●● ●
●

●
●

●●● ●●● ●●●● ●● ● ●●● ●●●● ●● ●● ●● ●
● ●● ●● ●●
●

● ● ●●● ●●● ● ●● ●● ●● ●● ●● ● ●● ● ●● ●● ● ●●●●● ●

●

● ●● ●

●●

●● ● ●
● ● ● ● ●

●
● ● ●● ● ●● ● ●●

● ● ●●● ●●● ●●●

●●

●
● ●

●

●
●

● ● ●● ●
●

●
●

●●●● ●●●● ●● ●
●

●

●

●
●● ●● ●

●
●●● ●● ●● ●● ●● ●

●
●●● ●● ●● ● ●● ●●

●
●●●●● ●●● ●● ● ●● ●● ●

●
●●● ●●● ●● ● ● ●● ●● ● ●●●●

●
● ●● ●● ● ●●

●
●●● ● ●● ●● ●

●

●●●● ●
● ●

●●● ● ●● ● ●● ●● ●● ●● ●●●● ● ●●●● ●● ●
●

●
●

●● ●● ● ●● ●● ●●● ●●● ● ●● ●● ● ●●● ● ● ●● ●● ● ●● ●●●

●

● ●●● ● ●● ● ●●●● ● ●● ● ● ●

●

●●

●

●●●● ●●● ● ●● ●

●

●
●

●● ●●● ●

●

● ●●● ●● ●●● ●●●

●
●

●● ●● ● ● ●●●
●

● ● ●● ●● ●● ●●● ●● ●● ● ●●●● ● ●● ● ● ● ●●●● ● ●● ●● ● ● ●● ●●●●
●

●

● ●● ●●
●●

●● ●● ●●

●

●●●●● ● ●● ● ●●●

●

● ● ●
●● ● ●

●
●

●

●

●● ● ●●● ●●

●
● ●● ●● ●●●

●

●

●●● ●● ●
●

●● ●
● ●

● ●●● ●●● ●● ●● ●● ●● ●● ●● ●● ●●●●● ● ●● ●● ●● ● ●● ● ●● ●●
●

● ● ●● ●● ● ● ●●●● ● ●●● ● ●●● ●● ● ●
●

●
● ●● ●

●
●●●● ●●● ●●● ●●● ● ●● ●● ● ●●

●
● ●● ●● ●●●●● ●●● ●●● ● ●● ●● ● ●●●

●
● ●●● ●● ●●

●

●● ●● ● ●●● ● ●● ● ●

●

●

●

●
●

●●● ●●● ●●● ●
●

● ●●●● ●●● ● ●

●

●● ●●● ● ●

●

●● ●●●●●●
● ●●●●

●
●●●

●
●● ●●

●
● ● ●●● ● ●●●● ●● ● ●●● ●● ●● ● ●● ●●● ●● ●●● ●● ●●●● ●●

●
● ● ●●● ● ● ● ●● ● ● ●●● ●● ●●

● ●
●

● ●● ● ●● ●●● ●● ● ● ● ●●● ●●
●

● ●●●● ●●
●

●●
●

●●● ●● ●●● ●●

●

●

●

●
●● ● ●●●

●

● ●● ●● ●●

●

● ●●● ●●

●

● ●● ●● ●● ●● ●
●

● ● ●●● ● ● ●

●

●● ● ●
●

●● ● ●●

●

●

●

● ●● ●●●●

●

●

●●● ●● ●●● ● ●● ●● ●●●

●

● ●●●●
●

●●●● ●● ● ●●● ●● ● ●● ●● ● ●●● ●● ● ●●● ● ●●● ●● ● ● ●●● ● ●● ● ●● ●● ● ● ●● ● ●●● ● ●

●

●● ●●●● ●●● ● ●●● ● ●● ●● ●● ●

●

● ●●●●●●● ●● ●● ● ●● ●●● ● ● ●●● ● ● ●● ● ●●

●

●●● ● ●● ●●
●

●
● ●

●

● ● ●● ● ●● ●● ●● ●● ●●● ●● ●●
●

●●●● ● ●● ● ● ●
●

●●● ●● ●● ●●● ●●

●

●● ●●
●

●● ●● ●● ● ●●● ●●
●

● ●● ●●
●●●● ● ●●

●
●● ●●● ● ●

●
● ●● ●● ●

●
●●

●
●●● ●●●

●
● ●

●
●● ● ● ●

●

● ●● ● ●● ●● ●●● ●● ●
●

●● ●● ●●● ● ● ●●● ● ●●
●

●●● ● ●● ●●● ● ●●● ●●● ● ●● ●● ● ●● ●● ●● ●● ● ●● ●●●

●

● ●● ●●●● ● ●● ●

●

●
●

●● ● ● ●● ● ●● ●● ● ●●● ● ●●

●
●

● ●●● ●●● ● ●● ●● ●●● ●●● ●
●

● ●●● ●

●

● ●● ● ●
●

●

●

●●●●● ● ●● ●
●

●● ●●●
●

● ● ● ●
●

●● ●● ● ●● ● ●
●

● ●● ●● ●●● ●
●

● ● ●● ● ●●● ●● ● ●● ● ●● ●

●

●● ●

●

● ●● ● ●●●● ●●● ●● ● ●● ● ●
●

●● ●●● ● ●● ●● ●● ● ●● ● ●●● ● ●● ● ●● ● ●● ● ●● ●●● ●
●

●● ●●● ●● ●● ●●● ●
●

●● ●● ●● ●● ● ●●● ●● ●●
●●

●● ●● ●● ●●
●

●● ●● ●●

●

● ● ● ●●●● ●● ● ● ●●● ●●●● ● ● ●●● ● ●●● ●●●●● ●●
●

● ●● ●● ● ●● ●● ● ● ● ●● ●
●

● ●
●● ● ● ●●●● ●●● ●● ●

●
●● ●●

●
●●● ●

●

● ●● ● ●●●
●●● ●

●

● ●●
●

● ● ● ●● ●● ● ●●● ● ●
● ● ●● ●● ●● ●●● ●●● ●●●● ●

● ●●● ● ●●●● ●● ●● ● ●● ●● ● ● ● ●●● ● ●●● ● ● ●● ● ●●●●

●

●● ● ● ●●● ●● ●
●

● ● ●● ●●
●

●● ●●●● ●●●● ●●● ●●●●
●

● ● ● ●●●● ●●
●

●

●●●
●

● ●●
● ●●

●

●● ●●●●● ●●● ●●●●●
●●

●●● ● ●●● ●● ● ●● ● ● ● ●●●
●

●●

●
●● ●● ●●●●● ● ●●●

●
●● ●● ●●● ● ●●●● ● ● ●●

●

● ● ●●

●
●

●●● ●

●

●●●●

●

●● ●●● ● ●
●

●● ●
●

● ●

●

●●
●

● ●●

●

●
●● ● ● ●● ●● ●● ●● ●●● ● ●●● ●● ●● ●●

●
●● ● ●●●

●● ●● ● ● ● ●● ●
●

● ●● ●●●

●

●● ● ●●
●

●●●● ●● ● ●● ● ●

●

●●
●

● ●●● ●●● ●●● ● ●●● ●

●

●● ●● ● ●● ●●
●

●● ● ●● ●● ●● ●●●● ●●● ● ●● ●●● ● ●● ●● ● ●

●

●

●

●●● ● ●● ●● ● ●●● ●
●

●● ● ●● ●● ●● ●●●● ● ●● ●● ●●●● ●● ● ●●● ●● ●● ● ●
●● ● ●● ●● ●●● ● ●●● ●● ●

●

●● ● ●● ●

●

●● ●●●● ●●

●

●● ● ●● ●● ●● ●●
●

●●● ●● ●●● ●

●

●● ● ●● ● ●● ● ●●● ●● ●

●

●

●

● ●● ●● ● ●● ●●● ●●● ●

●

●● ●●
●

●●●● ●● ●● ●

●

●●● ●● ●●●● ● ● ●● ●● ●● ● ● ●● ●● ●●●● ●● ●● ● ●● ●● ● ●● ●●● ●
●

●●●● ●●●
●

●●●● ●● ●
●

● ● ● ●●●
●

●

● ●● ● ●● ●● ●
●

● ● ●●
●

●●
●

●● ●
●

● ●● ● ●● ●●● ● ● ●●● ●●● ●●●● ●●●● ●●●● ●
● ● ● ●● ● ●● ●● ●●● ●● ●● ●● ● ●● ●●

●
●●

●

● ●● ● ●● ●● ●● ●●●●● ●● ● ● ● ●● ● ●

●

●● ● ●● ●● ●●● ● ●● ●● ● ●● ●
●

● ● ●●● ●●● ●● ● ●● ● ●● ● ●● ● ● ●● ● ●● ●●● ● ● ●● ●●● ●● ●

●

● ● ●● ● ● ●●●● ●●●● ●
● ● ●●●

●
●● ●● ●●●● ●● ●●

●

● ●●

●

● ●●● ●● ● ●●●
●● ● ●● ●

●

● ●● ●● ●● ●● ● ●●● ●●● ● ●● ●● ●
●

●
●

●● ●● ● ●● ● ●● ● ●● ● ●●● ● ●● ●●●● ● ●● ●●

●

● ● ●● ●● ●● ● ●●●● ●● ●● ● ● ●●●● ●
●

●● ● ●● ● ●●
●

●
● ●●● ●● ●

●
● ● ●● ●● ●

●
●● ●● ●●● ● ●● ●● ●● ●●● ● ●

●
● ●●● ●●● ● ●

●
● ●●

● ●
●

●● ●●●
●

●

●● ● ● ● ●
● ●● ●●● ●● ● ● ●●

●
● ●● ● ●● ●

●
●● ●● ●●●

●
●

●

●
● ●●●

●●
●●● ●●

●

●
●

● ●
● ●

●● ● ●
●

●● ● ●● ●●● ● ● ●●● ● ●●●

●

● ●●● ●● ●● ● ●●●●
●

●●● ● ● ●● ● ● ●● ● ●●● ●●● ●●● ●● ● ●●●
●

● ●● ● ●●● ● ● ●● ●

●

● ●●● ● ●● ● ●● ●●● ●● ●● ●● ●● ●
● ●● ●● ●● ● ●●● ●

●

●● ●●● ●●●●
● ● ●●● ●

●●
●● ● ●● ●● ● ●● ●● ●● ● ●● ●●● ●● ●●●● ●● ● ● ●

●
●

●
●●

●

● ●●● ● ●●● ●●● ●● ●● ●● ●●● ●
●

● ●●● ● ●● ●● ●●● ●● ●●●● ●● ●● ●●●●
●

●● ●●● ●● ●●

●

● ●● ●● ● ● ●● ●●●● ●● ●●● ●● ●● ●●● ●● ●●● ●●● ● ● ●●● ●●● ●●
● ●

● ●●● ●●● ●
●

●● ●
●

● ●● ●● ● ●●●●●●●●
●

●
●● ● ●●● ●● ●● ● ●

●
●●●●● ●

●

●

● ●● ●● ● ●●●
●

●●
●

●● ●● ● ● ● ●●
● ●

●●
●

●●
●

● ● ●●● ●
●

●● ● ●●● ●●● ● ● ●● ●● ●●
●

● ● ●● ● ●

●

●● ●● ● ●●● ●● ● ● ●●● ●●● ●●
●

●
●

●●● ●● ● ●● ●● ●● ● ●● ●
●

● ● ● ●●●●●● ●●

●

●

●

●
● ● ●● ●

● ●● ● ●● ●
●

●●●●
● ● ●●● ●●● ●● ● ●● ●●● ●

●

● ●●● ● ● ●● ●● ●●

●

●●

●

● ●● ●● ●

●

●● ● ● ●● ● ●●● ●●●● ●● ●●●

●

●● ●● ●● ●●●●● ●● ●●

●

●● ●●

●

● ●● ●
●

●● ●● ●

●
● ● ●●● ●● ●

●
●● ●

●

●● ● ●●

●

●●● ● ●● ● ● ●● ●
●

●●● ●●● ● ●●●

●

● ● ●●●●

●

●● ●● ●●

●

● ●●● ●
●

●

●● ●● ●●●●●
●● ●● ●●● ●● ●

●
●● ● ● ●●●● ●●● ●● ●●● ● ● ● ●● ●

●

●● ●●● ●● ●●● ●●● ●

●

● ● ●●●●
●

●● ●●●●●
●● ● ●●● ● ●● ● ● ●●● ●● ● ●●●● ●● ●●●●●● ●● ● ●

●
●● ●●● ● ● ● ●●●●●

●

● ●●● ●● ●●● ● ●●● ● ●● ●● ●● ● ●●●●
●

●● ● ●● ●● ● ●●
●

●● ● ● ●● ●●●● ● ● ●● ● ●● ●● ●
●

●●● ● ●● ●● ●● ●● ● ● ●●●● ●●

●

●
●● ● ●

●
● ●● ●●● ●● ●●● ●

●
●

●● ●● ● ● ●●●●●●
●

●● ●● ●●● ● ●●● ● ● ● ●●●● ●● ●●● ●● ●
●

● ●● ● ●● ● ●● ●●● ●●●
● ●●● ●● ●●● ●● ●●

●

●● ● ●●
●

● ● ●● ●● ●
●

● ●● ● ●● ●● ●● ●●
●

●●● ●● ●● ●● ●●● ●● ●● ●● ●●● ● ●● ●●● ●●● ●●● ●●● ● ●● ● ●
●

● ●● ●● ●●● ●● ●●●
●

● ●● ●● ● ●

●

● ●●● ●●●

●

●●● ●● ●● ●● ●● ●

●

● ●●●● ● ●●● ●●

●

●●● ●●●● ●●● ●● ●● ● ●● ●● ● ● ● ●● ●

●

● ●● ●● ●● ●●● ● ●● ●● ● ● ● ●

●

●● ●●● ●● ●● ●● ● ●● ● ●● ●●

●

● ●● ●● ● ● ●● ●●● ● ●●● ●●● ● ● ●●●● ● ●●●● ●● ●● ● ● ●● ●

●

● ● ● ● ●●● ● ●

●

●● ●●●● ●●● ● ●●

●
● ● ● ●●●● ●● ●●●

●

●

● ●● ●●● ●●● ●●● ●● ●● ● ●● ●●● ●● ●
●

● ●● ●●● ●● ●● ●● ●●● ●● ● ●● ● ●●● ● ●●● ● ●●● ● ●● ●● ●● ● ●● ●● ●●
●

●● ●● ●●● ● ●
●

● ●●●
●

●●●● ● ● ●● ●●● ●●●● ●● ● ●● ●●● ● ●●●● ● ●●●●
●

●

●
●

●● ●● ● ●● ●● ●●
●

● ●● ● ●● ●●
● ●

●● ●● ●● ●●●● ●●● ●●●
●

●

●
●● ●● ● ●●●●● ●

●

●●● ●
●

●● ● ● ●
●

●●

●

● ●● ●●
●

● ●● ●●●● ● ● ●●●● ●●●● ● ●● ● ● ●
● ●● ●● ● ● ●●● ●●● ●● ● ●● ●● ● ●● ●● ●●

●

● ●●●● ●●● ●●●●●● ●● ● ●● ●● ●

●

●●● ● ●
●

● ●
●

●● ● ●
●

●

●

●● ● ● ●●
●

● ●● ● ●● ● ● ● ●●
●

● ●● ● ●●●● ● ●● ●● ●● ●● ● ●● ●● ● ●●
●

●● ●
●

●●
● ●●

●
●

●
● ● ●●● ●●● ●● ●● ●

●●
● ●●●● ●● ●● ●

●

● ●●●● ●● ●
●● ● ●

●
●● ●

●
● ●●●● ● ●●● ● ●

●

●●
●

●● ●● ●●●● ●● ●● ● ●●
●

●● ● ●● ● ●●● ● ●● ●●● ●●● ●● ● ● ●● ●● ● ●●● ●● ● ●●● ●● ●

●

●

●

● ● ●
●

●● ●● ●● ●●

●

●●●
●

● ●

●

● ● ●●●
●

●● ●●
●

●● ●●● ●●

●

● ● ●● ●● ●●
●● ●● ●

●

●●

●

● ● ● ●●● ●●● ●● ●●●● ● ● ●● ●● ● ●● ●●

●

●● ●● ●●● ●● ●● ●●● ● ●●●● ● ●● ●● ● ●●● ● ● ●● ● ●● ● ●● ●

●

●● ●● ● ●● ●● ● ● ●●● ●● ●● ● ●● ●● ● ●● ●● ●● ● ● ●● ●● ●●● ●● ●● ●● ●● ●●●● ● ●● ●●●●●
●

●●● ●● ●● ●● ●●●●● ● ●●
●

●● ●● ●●
● ●● ● ● ●●●●●●

● ●● ●● ● ● ●
●

●● ●●● ● ●
●

● ●● ●●● ● ● ●● ● ●●●● ● ●●●

●

●● ● ●●● ● ● ●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●● ●● ● ●●● ●●● ●

●

● ●●●● ●●● ●●● ● ● ●●● ●●● ●● ●●●● ● ● ●●●
●

● ●● ● ●● ●●●
●

●●● ● ●● ●
●

●

●● ●● ● ●●● ● ●● ●●●● ● ●●●

●

●

●

● ●●●● ● ● ●● ●

●

●●●● ●

●

●

●

●
● ●●●

●
●●● ●

●

● ●●

●
● ●

●

●
● ●●● ●●● ● ●●

●

● ●●

●

● ●
●

● ● ●● ●

●
● ● ●● ●● ● ● ●● ● ●●● ●● ● ●●

●

● ●●●
●

●● ● ●●●● ●● ● ● ●
●

●● ● ●● ●●● ●●●● ●● ●

●
● ● ●●

●

● ●
●

● ●
●

●
●

●● ● ●●● ●● ●● ●●

●

●
● ●

●
●

●● ● ● ●● ●●● ● ●● ●●
●

● ● ●● ●● ●● ●● ●
●

●●● ● ● ●●
●

●● ●● ● ● ●● ●●● ● ●● ● ● ● ●●
●

● ● ● ●● ●● ●● ●●

●

●● ●●
●

● ● ● ●● ● ●●●●● ●●●● ●● ● ● ●●
●

●● ●
●● ●● ●● ●

●
●●●● ● ●● ●● ●● ●● ●● ●● ● ● ●● ●● ●

●
● ● ●● ● ●●

●
●● ●

●
●● ●

●●
●●●

●
● ● ●● ● ●● ● ●● ●● ●● ●● ●● ●

●
●●● ●●●

● ●● ● ● ●
●

● ●●● ●● ●● ● ●● ●● ● ●

●

●●
●

● ●● ●● ● ●●● ●●

●

●●
●●● ●●

●
●● ●● ●● ●●● ●

●

●●● ●● ●●●● ● ● ● ●

●
●

●

● ●● ●●● ●●●● ●●● ●● ● ●● ● ●●● ● ●●●● ●● ●●
●

● ● ●●●●
●

●● ●

●

● ●●●●
●

● ●●●●● ● ● ● ●● ●● ● ●● ● ●● ●● ●●● ●● ●● ● ●●● ●● ●● ● ●●● ●● ● ●●● ●●
●

●●●●

●

● ●● ●●● ●●● ●
●

●
● ● ●●●

●

● ● ●●
●● ●●● ●● ●

●
●●● ● ●● ●

●

● ●● ● ●●●● ● ●● ●● ● ●
●

●● ● ●● ●● ●● ●● ●●

●

● ●●● ●● ●
●

●●
●

● ●●● ● ●● ● ● ●● ●
●● ●

●
●●● ● ●● ●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ● ●● ●● ● ●● ●● ●● ● ● ●●● ●● ● ●● ●

●

●● ●●● ● ●●

●

● ● ●● ● ● ●●

●

● ● ● ●●
●

●●● ●
●

●
● ●● ●●● ● ● ●●● ● ●● ●●● ●

●
● ●

●

●● ●●●● ●●●● ●● ● ●● ●● ●●

●

● ●●● ● ●

●

●● ●● ●
●
●● ● ● ●

●

●
●

●
● ●●● ● ●●

●
●●●● ●●● ●

●

● ● ●● ●●●

●

●●●● ●● ●●● ●● ● ●● ●● ●● ● ●● ●● ●● ● ●● ●● ●●●

●

● ●● ●●●●
●

● ●●● ● ●●●● ●●●● ● ● ●● ● ● ●●● ●● ● ●● ● ●●● ●●

●

● ●● ● ●● ●●● ●●● ●●
●

●● ●
●

●● ●
●

● ●

●

●● ●● ●● ●● ● ●● ● ●●● ● ●●● ●●● ● ● ●● ●●●●● ●● ●● ●● ● ●● ●●
●

●● ●● ●●● ● ●● ●● ●● ● ●● ● ●●●● ●●●● ● ●

●

●●
● ● ● ●●

●

●

● ● ●● ●● ●● ●● ●● ●● ● ● ●● ● ● ●● ●● ●●● ●●● ●●●●
●

● ●● ● ●● ● ●● ●●● ●● ●● ●● ●● ● ●●

●

●●● ●● ●●●● ●●● ●●● ● ● ●● ●●● ●●

●

●●●●● ● ●●● ● ●● ●●● ●●● ●● ●● ● ●● ● ●●

●

● ●● ●●●
●

● ● ● ●●●
●

● ●● ●●● ● ● ●● ●● ●● ● ●● ● ●●●● ● ●● ●
●

●● ● ●
●

● ● ●● ●●● ●●● ●● ●● ● ●● ●●
●

● ●●● ●● ●●● ●● ●● ● ●●● ●●● ●●●● ●●

●

● ●●● ●● ● ●● ●●● ●● ●● ●●● ●● ●●●● ●● ● ●● ●● ●● ●
●

● ●●●● ●●●● ●●● ●●● ● ●● ● ●●● ●● ●● ●● ●●●●●● ●●●
●

● ● ●● ●

●

● ● ●● ● ●●● ●●●
● ●●● ● ●●

●

●● ● ● ●●●

●

●●

●

●● ●● ●●● ● ●● ●●● ● ● ●●
● ● ●● ●● ●●● ● ●

●
●● ● ● ●● ●

●
● ●● ●●

●

●

● ●● ●

●
● ●● ●●● ●●● ● ●●●●

● ●● ●● ●● ●● ● ●
●

●

●●

●

●
●

● ● ●● ● ● ●● ● ●● ●●●●● ●
●

● ●● ●● ●● ● ●●●
●

●● ●● ●● ●● ● ●● ●● ●● ●● ● ●●
●

●●● ●●●● ● ●● ● ● ●
●

● ●

●

●● ●● ● ●●
●

●● ● ●● ● ●
● ● ● ●

●

●● ● ●
●

● ●●●

●

●● ●●● ● ●
●

●● ●
●

●
●

● ●●
●

● ●● ●
●

●● ●●●● ●● ●●● ●● ●● ●● ●● ● ●● ●●●● ●●● ●● ●●● ● ● ●● ● ●● ●●

●

●

●

●● ●● ●●● ● ●●●● ● ●●●

●

●●● ●●●● ●●● ●● ● ● ●● ●
●

● ●

●

●● ●● ●● ●● ● ●● ●

●

●● ●●● ●● ●● ● ●●● ● ●● ● ●●● ●●● ●●
●

●●●● ● ●● ●

●

●● ●●
●

● ●●
● ●●● ●● ● ● ●●●● ● ●● ●● ●● ●●●

●

● ●●●● ●
●

●●● ●● ● ●● ●● ● ●● ●●● ● ●●● ● ●● ●●● ●●●● ●
●

●●● ●
●

●

●● ● ● ●● ●● ●● ● ●●●● ●●

●

●
●

●
●

●
● ●●●●● ●● ●●● ●

●
●

●●● ●● ●●●● ●●●● ● ● ●●

●
●

● ● ●● ●● ● ●● ● ●●●
●

●● ●●● ● ●●

●
●

●

●●● ● ●● ●●● ●
●

● ●

●

●

●

● ● ●● ●
● ●

●●● ●●
●

●●● ●● ●● ●●● ●

●

●● ●● ●● ● ●● ●●● ●● ●●● ●● ●● ●● ● ●● ●

●

●● ● ●● ●●● ●● ●● ●●● ●● ●● ● ●● ● ●● ● ●●●
●

●
● ● ●●● ●● ● ●● ●●● ●● ●● ●

●

●● ●●● ● ●● ●● ● ●●● ●●●● ● ● ●● ●● ●●● ●● ●●
●

●● ●● ● ●●● ●● ●● ● ●●● ●
●

● ●●● ●●● ●●●● ●● ●● ●●

●

● ●● ●●●
●● ●● ●● ●●●●●● ●●●●

●
● ●● ●●●

●
● ●

● ●
●●● ● ● ●

●

● ●
●

● ●● ●●
●

●● ●●●
●

●●
●

● ●●●●● ●
● ●● ●● ●● ● ●●● ● ●●● ●●● ●● ●● ●● ● ●● ● ●● ●● ●● ● ●●● ● ●●●●● ●● ●●●●● ● ●●● ●●●● ●●●● ●

●
● ● ●

●●
● ● ●

●

●● ● ●●● ●● ● ●●●● ●●●● ● ●●● ● ●●● ● ● ●● ● ●●● ● ●●● ●● ●● ●

●
● ● ● ● ●● ●● ● ●●● ●● ●●● ●● ●● ● ●● ●● ●●● ●●● ●

●
● ●● ● ●●●

●
●● ●

●
● ●● ●●● ●

●● ●
●

●● ●●●● ●
●

● ● ●●● ●●●● ●●● ●● ●● ●● ●●
●
● ●● ● ●● ●●●● ●●●● ● ● ● ●●● ● ●●● ● ● ●●●●

●

● ●● ●● ●●●● ● ●● ● ● ●●● ●
●●● ●● ●● ●●●

●

● ●● ●●●● ● ●●

●
● ● ●

●
●●●● ● ●●● ●●●●● ● ●

●● ●●● ●
●

●● ●●●● ● ●● ●● ● ● ●●● ● ● ● ● ●●● ●● ●●● ● ●●●● ● ● ●● ●●

●

●

●●● ●

●

●●●● ●
●

● ●
●

● ●● ●● ●●● ● ● ●● ● ●●● ●
●

●

●
●

●

● ● ● ●●● ●

●

● ●●● ●● ●●● ●● ● ●

●●

●● ● ●
●● ● ●●● ●●

●
●● ● ● ●● ●●

●

● ●● ●● ●●● ●● ● ● ●● ●● ●● ●● ● ●● ● ●
●

●● ●●●●●
●

●
●●● ●● ● ● ●● ●● ● ●● ●● ●

●

●● ● ●
●

●● ● ● ●

●

●

●

●●

●

● ●●●●●● ● ●● ●● ●●● ●● ●● ● ●●
●

●● ●● ●
●

●● ●●●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●
●

●● ●●

●

●●● ●● ●● ●●● ●●● ● ●● ●●● ● ● ●● ●

●

● ●

●

● ● ●●
●

●● ●● ● ●●● ●●● ● ●●● ●●●● ●● ●●● ●●●● ●● ●● ● ●●

●

●

●

● ● ●●● ●●
●●

●● ●
●

●● ●● ●●● ● ● ●● ● ●● ●● ● ●● ●
●

● ● ●● ●●● ●● ● ● ●● ●● ● ● ● ●● ●●● ● ● ●● ●●●● ●● ● ●●
●

● ●

●

●
● ● ●● ●

●
●● ● ●● ● ● ●●● ●● ●●● ●● ●●● ●●●

● ●● ●● ●
●

● ●● ●

●

● ●●● ●●

●

●● ● ●● ●●● ●● ● ●●
●

●●●●

●

● ●● ●●

●

●● ● ●● ● ●● ●●● ●
●

●● ●● ●● ●● ●● ●● ●● ● ●● ●●● ●● ● ● ●● ●●●

●

●
●

● ●●●● ● ●● ●● ● ●● ●●●● ●● ●● ● ●●●

●

●●

●

●●● ● ●●● ●● ● ●●
●

● ● ● ● ●● ●
●

●

● ●●● ●●

●

●● ●● ● ● ●● ● ●● ●●
●

●●● ● ●● ● ● ●● ● ● ●● ● ●● ●
● ●

●●
●● ●●● ●● ● ●● ●●

●

● ●● ●● ● ●● ● ●● ● ●● ● ●●● ●●
●

●●●● ●●● ●● ● ● ●●● ●
●

●

● ● ● ●● ●

●

●●

●

● ● ●●● ●● ● ●● ●●● ●● ●● ●● ●●●

●

● ●● ● ●● ● ●
●

● ●●

●

● ●● ● ●● ●●● ●●● ● ●
●

●● ●●

●

● ● ●● ●●● ●● ●● ● ●
●

● ●●
●

● ●

●

●●● ●

●

● ● ●●● ● ●
●

●● ●●● ●● ● ●● ●● ●● ● ●●●●● ●● ● ●● ●●● ● ●●● ●● ●● ●●● ● ● ● ●●● ●● ●●
●

● ●● ●●● ●● ●● ● ●●● ●● ● ●
●● ●●●● ●● ● ●● ●●● ●● ●● ●● ● ●● ● ●

●

●
● ●

● ● ●●● ●●● ●

●

● ●●● ●●●●●
●

●●● ● ● ●●● ● ●● ●● ● ●● ●● ●● ● ●● ●● ● ●● ● ●

●
●

●●●●
●

●●
● ●●● ● ●● ●● ●●● ● ●●● ●● ●● ●●

●
●● ●● ●● ●● ●● ● ● ● ●● ●●● ●●

●
●● ● ●●

●

●
● ● ●● ●● ●●● ●●● ●●● ●●● ●● ● ●●●

●

● ● ●● ●●● ●● ●●●● ●● ●
●

●●●●

●

●●●● ●● ●●● ●
●

● ● ● ●● ●
●

● ●●●
●

● ● ● ● ●● ●● ● ● ●●●●
●● ●●●●

●

● ●● ●●● ● ●●● ● ●● ●●●● ● ●● ●● ●●● ●● ●● ● ●●● ● ●●● ●●● ●● ●● ● ●● ● ●●● ● ●●● ● ●● ●●● ●●●

●
●●● ●●●● ● ●

●
●

●
●

●
●● ●

●
●● ● ●

●

●● ● ●● ●

●

●● ●● ● ● ●● ● ●● ●● ● ●●●●● ●●●● ● ●●● ●● ●●● ●● ●●●● ● ●
●

● ●● ●●● ●●●

●

● ● ● ●●● ●
●

●

● ●

●
● ● ●●

●

●●● ●● ● ● ●●● ● ●● ●● ●●● ●●● ●● ●
●

● ●● ● ●●

●

●● ●●● ●

●

● ●● ●●●● ● ● ●●● ●● ●● ●● ● ●●● ●
●

●●●●● ●
● ● ● ●● ● ●● ●● ● ●●

●
●● ●● ● ● ●● ●●● ● ● ●● ●● ● ●● ● ●● ● ●● ●● ●

●
●● ●● ● ●●●●

●

● ●●● ●

●

● ● ●● ● ● ● ●●
●

●
●

●● ●● ● ●
●

●●● ●● ●● ● ●● ●● ●● ● ●
● ● ●● ● ●●● ●● ● ●

●

●
●

● ●●●●● ●●●● ●●● ● ●●● ●●
● ●

● ●● ●● ●●●
●

●● ●
● ● ●●

●●
●●● ●● ●● ●●● ●

●
●

●●

●

●
● ● ●● ●●

●
●●● ● ●●● ● ●●● ● ●●● ●

●
● ●● ● ●●●● ●● ●● ●●● ●●●

●
●

●
● ●● ●● ●●●●

●

●● ● ● ● ●● ●●● ●
●

●●● ● ●●●● ●● ●● ●●● ●●● ●●● ● ●●●●
● ● ●● ● ●●

●

● ●● ●●
●

●● ●
●

●

●

● ●● ●
●

● ●● ● ●● ●● ●

●

●●
●

● ●●● ●
●

● ●● ●● ●●●● ●●

●

●●●● ● ●●●● ●● ●● ●●● ●●● ● ●●●● ●● ●● ●●● ●● ●● ●●● ●● ●
●

● ●● ● ●
●

●● ●● ●● ● ● ●●●●● ●● ●● ●●

●

●● ●● ● ●● ●
●

● ●●●●● ●●● ● ●● ● ●
●● ● ●● ●● ●● ●● ●● ●

●
● ●● ●●● ●●● ● ●● ●●

●

● ● ●●● ●●● ●●● ●● ●● ● ●● ●● ●●● ●

●

● ●● ●●●
● ●● ●● ● ●●●

● ●●

●

● ●●● ● ●
●

● ●● ●● ●●●●● ●●● ● ●●● ●● ● ● ● ●● ●●●

●

●● ● ●● ●●

●

●●

●

●
●● ●● ●

●
● ● ●

●
●● ● ● ● ●●●●●

●
● ●● ●●●● ● ●

●

● ● ●●●

●

●● ●●● ● ●● ●●● ● ● ●

●
●

● ● ●●●● ●● ● ●
●

●● ●● ●●●● ●
●

● ●● ●●●● ●● ●● ●● ●● ●● ●●● ●●
●

●● ● ●●● ●● ●●●● ●●● ●●● ● ●● ● ●●●● ●● ● ●● ●● ● ●● ●● ●●● ●●
●● ● ●● ●● ●●● ●●●●●

●

●● ● ● ●●●● ● ● ●●
●

● ●● ● ●●● ●●●
●

●
●

●● ●● ●● ●●●●● ●● ●●● ● ●● ●● ●● ●● ●●● ●● ● ●● ● ● ●

●

● ●●● ● ●●● ●● ●

●

● ●
●●

● ●●●
●

●●●● ●●● ● ●●● ●●●● ● ●● ●●
●

●● ●● ● ●●● ●● ● ●

●

● ●● ● ● ●●● ●● ●●● ●●●
●

●● ●● ●
●

● ●● ●●● ● ●●● ●● ●● ●● ● ●● ●● ●● ●

●

●

●

●●● ● ●

●

●● ● ●● ● ● ●●
●

● ● ●● ●●●
●

● ● ●●
●

●●● ●●● ●● ●
●

● ●●●
●

●●● ● ●● ● ●●●● ●

●

● ●● ●● ●●● ● ● ● ●●● ●● ●●
●

●● ●● ●● ● ●● ●●● ● ●

●

●●● ●● ●● ●●● ●●● ●● ●● ● ●●● ● ●●● ●●● ●● ●● ●● ●● ● ●● ●● ● ●

●

●●●●●● ●

●

●●
● ●● ● ●● ●● ●●● ● ●● ●

●

●● ● ● ●●● ●●
●

●● ● ●●● ●
●

●● ●●● ●●●●● ●
●

●● ●● ●● ●● ●

●

●
●

● ●● ●● ●●● ● ●●●●
●

●●●● ●
●

● ●
●

●

●

● ●● ●● ●● ● ●

●

●●● ●●●● ●●
●

●●
●● ●●

●● ●●●

●

● ●● ●● ●●

●

● ●●● ●● ● ●● ●●●● ● ●●● ●●● ●●●
●

● ● ● ●●●●●● ● ●
●

●● ●● ●
●

●● ● ● ●● ●● ●●● ●● ● ●
●

●● ●●● ●● ●●●
● ●●● ● ●●● ●● ●● ●●●

●

● ● ●● ● ● ●
●

● ●● ●● ● ●
●● ●●●●● ●

●

● ●● ●● ●● ●● ●● ● ● ●● ●● ● ●● ●●● ● ●● ●●●●● ● ●● ● ● ●● ● ● ●●●●● ●● ● ●●● ●●●● ●

●

●
●● ●● ● ● ●● ●●●● ●● ●●● ● ●● ●●● ●● ●● ●●●● ●●

●

●● ●
●

●●● ●
●

●
●● ●●● ●

●
●●●●

●

●

●

●

●● ●● ●●● ● ●● ●● ●●
●

● ●
●

● ● ●● ●●●● ●● ●
●

●● ● ● ●● ●
●

●●● ●● ●● ● ●● ● ●● ●
●

● ●●● ● ●●● ●● ●● ●● ●●● ●● ●● ● ● ●●● ● ●●

● ●

●

●
● ●● ● ●● ●● ● ●

●

●● ● ●●●● ● ● ● ●● ●●●● ● ● ●● ● ● ●● ● ●● ● ●● ●● ● ●● ● ●●● ●●● ●
●

● ●●● ●● ●● ● ●●● ●
●

● ● ●●●
●●

●

●●
●

● ●●

●

●● ●● ● ●●● ● ● ●● ●

●

● ●● ●●
●

●●●
●

●●● ● ●● ●● ●●● ● ●
●

● ●● ●●● ● ●
● ● ●●●● ●●● ● ●

●

●● ● ●●● ● ●● ●●
●

●● ● ●●●●●●
●

● ●
●

● ●● ● ●●●

●

● ●● ● ●●●● ●● ● ●● ●●●●● ●● ●
●

●● ● ● ●●● ●●● ● ●● ●●
●

● ●● ●● ● ●●● ●●●

●

●●●● ●●● ● ●● ● ● ●●●●● ●●●●● ●
●●●● ● ●

●● ●● ●
●

● ●● ●● ●●
●

●●●●● ● ●●● ● ●●
●

● ● ● ●● ● ●● ●●●● ●●●● ●●●● ● ●● ● ● ●●● ●● ●● ●
●

●● ● ●● ●●
●● ●● ●● ●● ● ● ●● ●

●
●●● ● ●● ●● ●● ●●● ● ●●●● ●●● ●● ● ●● ●●● ● ●● ● ● ●●● ●● ●

●
●●

● ● ●● ●●●
●

●
●● ● ● ● ●●● ●

●
●● ●●● ● ● ●●

●
● ●● ● ●● ●● ●● ●●● ●● ●●●● ●● ●●

●

● ● ●●● ●● ● ●● ●● ● ●

●

●

●

●●● ●●● ● ●

●

●

●●
●● ● ●

● ● ●● ●● ● ●● ●●● ●

●

● ● ●●●● ●● ●● ●

●

● ●●●● ●● ●
●

●
● ●

●● ●● ●

●

● ●●● ● ●●● ●● ●● ● ● ●● ●●●
●

●● ●
●

●
● ● ●● ●● ● ●● ● ●● ● ●●● ●

●

●● ●● ●● ●●● ●● ●● ● ● ●
●

● ● ●● ●●● ● ● ●● ●● ●●●● ●● ●● ●● ● ●● ● ●● ●
●

● ●
●

● ● ●●●● ● ●● ● ●●● ●● ●● ●● ●●●● ●● ●● ●

●

●● ● ●● ●
●●

●

●●

●

●●●●● ●●

●

●● ●●●
●

● ●● ● ●●
●

●●● ●● ●

●

● ●● ● ●● ● ●●
●

●

●

● ●●● ●●● ●●● ●● ●●● ●

●

●●● ● ●●● ●●
●● ●

●

● ●● ● ●● ●●● ●●●● ●

●

● ●●● ●● ●● ● ●● ●● ● ●● ●● ●● ●● ●● ●● ●● ●
●

●● ● ●●●● ● ●
●

●● ● ● ●● ●● ●● ●● ● ● ● ●● ●● ●●●●● ●● ●● ● ●●● ● ●● ●● ● ●●
● ● ●●● ●● ●● ●● ●●● ● ●● ●●● ● ●● ●● ● ●●● ●● ●●●

●

●

●● ●●● ●●●
●

●● ● ●●● ●● ●● ● ●●● ●●●● ● ●● ● ●●●
●

●●●
● ● ●●● ●● ● ● ●●●●● ● ●● ●● ● ●● ●●●● ●●●● ●●● ●●● ● ●

●● ●
●

●● ●● ●●

●
● ● ●●●● ●●● ●● ● ●●

●
●

●
●●●

●

●

●

●●●● ●● ●
●

●● ● ● ●● ● ●●● ●

●
● ●●● ●●●
● ●● ● ●

● ● ●● ● ●
●

●●
● ●

●
●●● ●●● ● ●●● ●

●

●
● ●●● ● ●● ● ● ● ●●● ●● ●● ●●

●
●● ●●

●

● ● ●●● ●
●

● ●●● ● ● ● ●●● ●

●

● ●●● ●
●● ● ●

●
●● ●● ●●●● ● ●●● ●● ●● ● ● ●●● ●● ●●●● ●● ● ●● ●●●

●

●● ●●

●

●●
●

● ●● ●●● ●● ●● ● ●● ●

●

● ● ●● ●●● ● ●●● ● ●● ●

●

●● ● ●●●

●

●●● ●● ● ● ●
●

●
● ●● ● ● ●

●
●●

●
●● ●●●

●
●● ●● ●

●
●● ●● ●● ●● ● ● ●● ●●● ● ● ●●●●●● ●● ●● ●●

●

●
●

● ●● ● ●● ●● ●

●

● ●●●●● ● ●● ● ●● ●●●● ●● ● ●● ●● ●●●● ● ●● ●●● ● ● ● ●
●

●● ●
●

●● ●●● ●● ● ●● ●●

●

●
●

●
●

●

●

●●
●

● ●● ●● ●● ●
●

●●● ●● ● ●●●

●

●● ●●● ●● ● ●
●

● ●● ●● ●● ●● ●●● ●● ● ●●●●● ●●●● ●● ● ●●● ●● ●●●● ●● ●● ● ●● ● ● ●
●

●
●

● ●● ● ● ●●●●●● ● ●●● ●● ●●● ● ● ●●● ●● ●●● ●●●●

●

●●●
●

●●● ● ● ● ●●● ●●●●
●

● ●●● ●●●●● ● ●●● ●● ●● ●

●

●● ● ●● ● ●
●

●

● ●●● ● ●● ●●● ● ●● ● ●● ●●● ● ● ●●● ●●●● ●● ●

●

●●
●

●●●●● ● ● ●
●● ●● ●●● ●●● ● ●● ●● ●●●

●
●

●● ●●● ●●● ●●

●

●

●

●● ●● ●● ●● ● ● ● ●● ●●● ●● ●● ●●● ●● ●●● ● ●●● ●●●●
● ●●● ● ●●●●●●● ● ●●●

●

●●

●
●

● ● ●●
●

● ●
●

●●
●● ●● ●● ●●●●● ●●

●
●●● ●● ● ●● ●● ●

●

● ●

●

● ● ●

●

●● ● ●
●

●● ●●● ● ●● ●● ●● ●●●●● ●●

●

●●●● ●

●

●●● ●● ● ●● ●●●

●

●●● ●●● ● ●● ●● ●● ●●● ●● ● ●● ●

●

● ●●●● ●● ●●●● ●● ●● ●● ● ● ● ●●●● ● ●●● ● ●
●

●●● ● ●●●
●● ●● ● ● ●● ●●● ●●● ●●● ●

●
●●

●

●●●●●● ●● ● ●● ●
●

●● ●●●● ● ●● ●● ●● ●● ●● ●

●

●● ●●● ●
●

●●● ●●● ●● ●●● ● ●● ● ●●●

●

●

● ● ●● ●● ●●

●

● ● ● ●

●

●●

●

●● ●● ● ●●● ● ● ●● ●●●
●●● ●

●
●● ●● ●●●●● ●●●

●
●● ●●● ●●

●
●● ● ●● ● ● ●● ●●●● ● ●● ●

● ●● ● ●●●● ● ●● ●● ● ●● ● ●● ●●● ●●● ●● ● ●

●

●● ●● ●●
●●● ● ● ●●●● ● ●● ●●

●

●● ●
●

●●● ●

●
●● ● ●● ● ●●●

●
● ●● ●● ● ●● ●● ● ● ●● ●● ●

●

●● ● ● ●●●●● ● ●● ● ● ● ● ●● ● ●●● ● ●● ●●● ● ● ●● ●●● ●●
●

●● ●●● ●● ● ●● ●● ● ●
●

●●● ●

●

● ●

●

● ●● ●● ●● ●
●

● ● ●● ●

●
●

●● ●● ●●● ● ●● ●● ●

●
● ●● ●●● ● ●

●

● ●●● ● ●

●

●● ● ●
● ●● ●● ●

●
●

●
●

●

● ●
●● ● ●●●● ●● ● ●●

●

●● ●● ●
●●

●●

●

●

●
● ●

●
●● ●● ● ●●

●

●●
●● ●● ● ● ●

●

●

●●● ● ●
●● ● ● ●●

●● ● ●● ●
●

●●● ● ● ● ● ●●● ●
●

●●●● ●● ● ● ●●● ●●●● ● ●●

●

● ●● ● ●●● ●
●

●● ●●● ●● ●●● ●● ●
●

●● ●● ● ●● ●●●●

●

●

●●● ●● ●● ●●●●● ● ●●●●

●

●

●●

●

● ●●● ●● ●●● ● ●●

●

●●● ●●● ●●
●

●●●●
●

●

● ●●●●● ● ●●● ●● ●●●
● ●●● ● ●●

●
●●● ●●● ● ●● ●●●

● ●● ●●● ● ●● ● ●●● ● ●● ● ●●●
●

●● ●● ● ●● ● ●●● ●● ●●● ●●

●

● ●● ●●● ●● ●●
●

●● ● ●● ● ● ●●●●● ●●● ●● ● ●● ● ●● ●● ●●● ●●● ● ● ●●●● ● ● ●● ●● ●●● ● ● ●●● ● ●●●●● ● ●●●●

●
●● ●●●● ●● ● ●● ●● ● ●● ●●●●●● ●●● ●●●● ●● ●● ●● ●●● ●●● ●● ●●

●

●

●

●●● ● ● ●● ●●●● ●● ●

●

● ●●●●
●

● ●● ● ●● ●● ●● ● ● ●●● ● ● ● ●●

●

● ●●● ● ●● ●●●● ●● ●
●

● ● ●● ●
●

● ●● ●●●● ● ●● ●●● ● ●● ●●●● ●● ●●● ●● ●

●

●●● ●●● ● ●● ● ● ●● ●● ●●●● ● ●

●

●● ●● ●●● ●● ●
●

● ●●
●

●●●● ●● ●●● ● ●●
●

●
●

● ●
●

●
●

●●●

●

●● ●●●● ●● ●
●

●●

●

● ●● ●●

●

●●
●● ●

●● ●●●● ● ●
●

●● ●●● ● ●● ●●
●

●● ● ●
●

● ●●
●

●● ●
●

●●● ●● ● ●● ● ●● ●● ● ● ●●
●

●

●

●● ●● ●●●●● ● ● ●●● ● ● ●● ●● ●● ●●● ●●●●● ●●● ● ●●● ●● ●● ● ●●● ●●● ●● ● ● ● ●●● ●● ●

●

● ● ●● ● ● ●
●

●● ●● ●
●● ● ●●●

●
●● ●● ●● ●● ● ●● ●●● ●● ● ● ●●●●

●
●● ● ●● ●● ●

●
● ●●● ●● ●● ● ●●

●
● ●● ●●● ● ●● ●●● ● ● ●● ●●●

●●
●● ●● ●● ●● ●● ●● ●●● ● ●● ●●

●

●●● ●● ●●● ●

●
●● ● ● ●● ●● ● ●●● ●●● ●●● ●● ● ●●● ●● ●●●

●
●● ●● ●● ●●

●
●●● ●● ● ●● ●● ●● ●

●
●● ●● ●●● ●●● ●

●

● ● ●●● ●●

●

●● ●
●
● ● ●●

●
● ●● ●● ●● ●●

●
●● ● ●●●●

●●●● ●● ●●● ●● ● ● ●●
●● ●● ●

●●
●

● ●● ●●● ● ●● ● ● ●● ●● ●● ●● ● ●●● ●●●● ●
●

●

●●
● ●

●●● ●● ● ●● ● ●
●● ●●●● ●● ●

●
●● ● ● ● ●

●
● ●●● ● ●●● ● ●● ● ●

●
●

●
●

● ● ●● ● ●● ●● ●● ● ●● ●●● ●● ● ●● ●

●

●●● ●● ●●

●

●●● ● ●●●●●● ● ●●● ●●● ● ●●

●

●● ● ●● ●● ● ●●●
● ●

●

● ●● ● ●● ●● ●●

●

● ●

●
●

●● ●● ●
●

●●● ●●● ●● ● ●●●●
●

●● ● ● ● ● ●● ●

●
●

●●● ● ●● ●● ●●

●

● ● ●● ●●● ●●●●
●

●●● ●●
●

● ● ●● ●● ●●
●

● ●
● ● ●●

●●

●●● ●●● ● ●●●●
●

● ● ●● ●● ●
●

●
●

●●● ●
●

●●
● ●●●●● ●● ●● ● ● ●● ●● ● ●●● ●

●
● ●●● ● ●● ●●

●

●● ●●● ●
● ●

●●● ● ● ●● ●●
●

● ● ●

●

●● ● ● ●
●

● ● ●● ●● ●● ●●●● ●

●

● ●● ●●● ●
●

●●● ●● ●●●● ● ● ● ●
●

●
●

●● ● ●● ●● ●● ●●● ● ●●● ● ● ●● ●● ●● ●● ● ●● ● ● ●● ●● ●●● ●
●

● ● ●

●

● ● ●
●

●●● ●● ●●
●● ●●● ● ● ●●● ●●●●●● ●● ●● ●● ●● ●● ●● ●●●●● ●● ●●

●
●● ● ● ●● ● ●● ●● ●●● ●

●
● ●● ●●● ● ●● ●● ● ●●

●

● ●●● ●● ●● ●●● ● ●●●●● ●●●●
●

● ●●

●

●● ●● ●● ● ● ● ●
●

●●● ●●
●

●●
●

●●

●

● ●

●

●● ●● ●● ●

●

● ●●● ●

●

●●● ●●● ● ● ●●● ●●● ●●●● ● ●●
●

●● ●● ●● ●● ● ● ●●● ●● ●● ●● ●● ●●●● ●●
●● ●●● ●●● ● ●● ●● ● ●● ●● ● ●●● ● ●●● ●●● ●

●
●

●
● ●● ●

●
●●● ●● ● ●● ●●● ● ●●● ●● ●

●
● ● ●

●

●●● ●● ●●

●●

● ●● ●

●

●
● ● ● ●● ● ●●

●

●● ● ●●● ●●●● ●● ●● ●● ●●●●● ●●

●

●●● ●
●

●●●● ● ●●

●

●●●
●●● ●● ● ●●●

●
● ●●

●

●● ●●● ●●●●
●

● ● ●● ●● ●● ●● ● ●● ●● ●●●● ●●

●

●● ●● ●●●● ●● ● ●● ●● ●●
●

● ● ● ●● ●● ●

●

● ●● ●

●

●●● ● ●●● ● ●●● ●●● ●

●

●●● ●● ● ●
●

●
● ● ●●● ● ●●●● ●● ● ●● ●● ●● ● ●●●●● ●

●● ●●● ●● ● ●● ● ●●●● ●● ● ●● ●●● ●

●

●● ●
● ●● ● ●● ● ●● ●● ●● ● ●● ●●●● ● ●●● ●● ● ●● ● ●● ●●● ●

●

●
● ●● ●●● ●

● ●●● ●●
● ●● ●● ●●● ●●● ● ● ●●

●

●●

●

●● ● ●
●

●●● ● ●●● ●●
●● ● ● ●● ● ●●● ●● ● ●●●

●

● ●● ● ●●
●

●●● ● ●● ● ●●● ● ●●● ●● ●● ● ●● ●● ●●● ●
●

●● ● ●● ●●● ●● ●● ● ● ●●● ●●●●●
●

●● ●●● ● ●●● ●● ●●●●● ●● ●● ●●● ●● ● ●●● ● ●●● ●● ●● ● ●● ● ● ●● ● ●● ●●
●

●●● ●● ●
●

●●●● ●● ● ● ●● ●●
●

●●

●

●●● ●● ●●● ●● ● ●
●

●●
●

● ● ●● ●●● ●● ●●●
●● ●● ●●● ● ●●

●● ●● ●● ●● ● ●

●

● ●● ● ●● ●●
●

●● ●●●
●

● ●●●
●

●●
●● ●● ●

●
●●● ● ●

●

●● ●● ●●●●● ●● ●●●● ●

●
●

●● ● ●●

●

● ●

●

●
●●

●
● ● ●● ●●● ●

●

●

●● ● ●●● ●● ● ●●●

●

●●●
●

●●●● ● ●●● ● ● ● ●● ●●● ● ●● ● ● ● ●● ●●●

●

●

●

● ● ●● ●●● ●● ●● ●●

●

●
●

● ●● ●● ●●●●● ● ●● ● ● ● ●●● ●● ●
● ●● ● ●

●
●

●
●●

●
●● ● ●● ●● ●● ●● ●● ● ●● ● ●●● ●●● ●●● ●● ●● ● ●● ●● ● ●● ●● ● ●●● ● ●● ●●● ●●● ● ●

●
● ●●

●

●

●

●●●● ●

●

● ●●● ●● ● ● ●● ●●

●

●
●

●
●

● ●● ●●
●

●
●

●● ●●●● ●●●● ●
●

●● ● ●●● ● ● ●●●● ● ●● ● ●● ●● ● ●● ●● ●● ●● ● ●● ●● ● ●● ● ● ●●
●

●● ●●● ●● ● ●●● ●
●

●●●
●● ●●● ●● ●●● ● ●●● ●●● ● ● ●● ●● ● ●● ●● ●●●

●
●● ●● ●●● ●● ●●●● ●● ●

●

●●● ●● ●●● ● ●● ●● ●●●
●

●●

●

●● ● ●●● ●●●● ● ●●●● ●

●

● ●●● ●
●

●●● ●
● ●

●

●

●●●

●

●● ●
●

●● ●● ●● ● ●● ●●● ●●● ● ● ● ●●● ●●

●

● ● ●●●

●

●● ● ●● ●●
●

●●●

●

●

●● ●● ● ●● ● ●● ●●● ● ●● ●●●● ●●●● ● ●
●● ● ●●●

●
● ●●● ● ●●● ●● ● ●● ●

●

●
●●● ● ●●●● ●● ●● ●●● ●●●● ●●● ●● ● ●

●● ●●● ●● ●● ●

●

● ●● ●●●● ●●●● ● ●● ● ● ●●● ●●
●● ● ●●● ● ● ●

●
●● ●●● ●● ●●●●

●
●● ● ● ●● ●●● ● ●● ●● ●● ●● ●● ● ●●●● ● ●●●

●
●● ●● ●●

●

●●● ●●● ● ● ●●● ● ●● ● ●●●●●
●

●● ●●● ●● ●● ●●●● ●● ●● ● ●●●● ●● ●●●

●

●
●

●●
●

●●
●

● ●● ●● ●●
●

●
●

●● ●● ● ●● ● ● ●● ● ●● ●●● ●●● ●●●●● ●●● ● ●●● ●● ●●● ●● ● ●● ●● ● ●

●

●● ●●●● ●●●● ● ●●● ● ●● ●● ●●
●

●●● ● ● ● ●●
●

● ●● ● ●

●

● ●●●
●● ● ●●● ●● ●● ●●●●

●
●● ● ●● ●● ●● ● ●

● ●● ● ●●● ●●● ●● ●●● ●● ●●● ●●● ●●●●

●

● ●●● ●
●● ●

●●●● ●●

●

●● ●
●

● ●
●

●● ●

●

● ● ●●● ●
● ● ●● ●● ●●● ● ●● ●

●
● ●● ● ●●

●

●●

●

● ● ●● ● ●●● ●●●● ●● ● ●

●

●

●

●● ●● ● ●●● ● ● ●● ●●●● ●● ●●
●

●● ●● ●● ● ●●● ● ● ●●● ●● ●●● ●●
●●

● ●● ●●● ●●
●

●● ●●

●

●● ●● ● ●●● ●● ● ●● ●● ●● ● ●●●●● ● ●● ● ● ●●●● ●● ● ● ●● ● ●
●

● ● ●●

●

●

● ●●● ●●

●

●
●

●●●● ●●● ● ●●●●● ●● ● ● ●● ●
●

● ● ●● ●● ● ● ●● ●● ●● ●● ●● ● ●● ●● ●●● ● ●●●●● ● ●● ●● ●● ●● ●● ●●●● ● ● ● ●● ● ●● ●● ●● ●●●
● ●● ●●● ● ● ●● ●

●

● ● ●
●

●●

●

●
● ●● ●

●

●● ●● ●● ●● ●●●
●

●●●
●

●● ●●● ●● ● ●●● ●

●

● ● ●●● ●●● ●● ● ●● ● ●

●

●
●

●● ●● ●

●

● ● ●●●● ●● ●● ●●●
●

● ● ●● ●● ●● ●●●
●

●● ● ● ●

●

●●●
● ●

● ●● ●● ●
●

● ●● ● ● ●● ●●● ● ● ●●●●●
● ● ●● ●●● ● ●● ●● ●● ●● ●● ● ●● ●

●

●

●●● ●● ● ●●●
●

●● ● ●● ●● ●● ● ●● ●●●
●

●● ●●●● ● ● ●● ●●● ●●● ● ●●
●

●● ● ●●●●● ● ●● ●●
●

●●● ●● ● ● ●
●

●
●

● ●●● ● ●●● ●●● ●●● ●
● ● ●● ●●●

●
● ● ●● ● ●● ●●

● ●

● ● ●
●

● ●●● ●● ●●

●

●● ● ●●
●

● ● ●●● ● ●●●● ● ● ●●●
●

● ●●
●

● ●●

●

● ● ●● ●●
●

● ● ● ● ●●

●

●
●

●

● ●● ●● ●●● ● ●● ●● ●

●

● ●● ● ●
●

●

●

●● ● ●● ●● ●●● ● ● ●●● ●● ●● ● ●● ●●● ●●●● ●● ●● ●● ● ●●●● ●
●

● ●●
●

●● ●●●●● ●● ●●● ●● ● ● ● ●● ●● ● ●● ●● ●●● ●●
●

● ● ●●● ● ●● ● ● ● ●●●●

●

● ●●●● ● ●●●●

●

●● ●● ●
●

●

●

●
●

● ●

●

●

●

● ●●● ●

●

●● ● ● ●● ●●●● ●● ●●●● ● ●● ●● ●●
●

● ●● ●●● ●
●

● ●●● ●● ●● ● ●● ●● ●● ●●
●

●● ●●● ● ●●●● ●● ●●● ●
●

●● ●
●

●● ●● ●● ●●
●

●●● ●● ●●●● ●● ● ●
●

● ●● ●●●● ● ●●●●●● ●● ● ●●

●

●● ●● ●● ● ●●● ●● ●● ●● ●● ● ● ● ●● ● ● ●● ● ● ●● ●● ●
●

● ● ●
●

● ●● ●●●●● ●● ●● ●● ● ●●●● ●●

●

●●●● ●●● ●
●

● ●● ● ●●

●

●

●

●● ● ●
●

●● ● ● ● ●●●●● ● ●●●● ●● ●● ● ● ●●● ●●●
●●

● ●

●

● ●●● ● ●●
● ●● ●● ●●● ●●● ●● ● ●● ●● ●

●

●● ● ●●● ●● ● ●●● ●●● ● ●● ●●● ●● ●●
●

●●●●●
●

● ● ●●●● ● ● ●● ●● ●● ●● ● ●●●● ●● ●●● ● ●●

●

●● ● ●●● ●
●

● ●● ●● ●
●

● ● ●● ● ●●
●

●●● ●● ●
●

●

●

●

●

● ● ●
●

●

●

●●
●

●● ●●● ●●

●

● ●
● ● ●

●●● ● ●● ● ●● ●●●

●

● ●●● ●●●● ●●● ●●

●

● ●●● ● ●

●

●

●

●

●● ●

●

●● ●●● ● ●

●
●

●● ●●● ● ●
● ●

●● ● ●●
●

● ●
●

●

●

●●● ●●

●

● ● ●●● ●●
●

●
●

● ●● ● ●●● ● ●●●
●

●● ●●● ● ●●●● ●●● ●● ●●●
●

●● ●● ●
●

●● ● ●● ●

●

●

●

●●● ●●● ● ●●● ● ●● ●● ●●● ● ● ●● ●●● ●●● ●● ● ●●● ● ●● ● ● ●● ● ● ●●● ●●●● ● ●●● ● ●●●● ●● ●●
●
● ●● ●● ●● ●● ●●● ● ●● ● ● ● ●●● ●●

●
●●● ●● ●●●

●
● ●● ●●● ●

●

●●● ●● ● ●●● ●

●

●

● ●● ● ●●● ●●● ● ● ●● ● ●●●● ●●
●● ●● ●●

●

●● ●● ●● ●● ● ●●●● ●● ●● ● ●● ●●● ●

●

● ● ●

●

●●●●●●● ● ●●● ● ●● ●●● ●● ● ●
●

● ●●● ● ●●● ●● ● ●● ●●●● ●● ●●●● ●● ●●●
●

● ●● ●●

●

●● ● ●
●

●●● ● ●● ●● ●
●

● ● ●●● ● ●
●

●●● ●● ●●● ● ● ● ●●● ●●●●●
●

● ● ●●● ●●

●

●● ●●
●

●● ●
●

●●● ●●
●

●● ●● ●●●
●

●●● ● ●● ● ●

●

● ● ● ●● ●●● ●●
●

●●●●● ● ●

●

●●●●●
●

●● ●
●

●● ● ● ● ●● ●●●

●

●●●
●

● ●● ● ●● ●●● ●● ●●● ●●●
●

● ●●●● ● ●● ● ●● ●●●● ● ●● ●● ●● ● ●

●

●● ●● ●● ● ●● ●● ● ●● ●● ● ●●●● ●● ● ●● ●● ●● ●●● ●●● ●●● ●●● ●●●●● ●● ● ●● ●● ●● ●●
●

●● ●● ●● ●● ●

●

●
●

●●● ●●● ●● ●●
●● ●

●

● ●● ●● ●●●

●● ●
● ●

●
●●

●
●● ●●● ● ●

●

● ●●● ● ●
●

● ●● ●● ●
●

● ●

●

●● ●● ●
●

●●● ●● ●
●

●●● ●● ● ●●● ●● ● ●●● ● ●●● ●●● ●●● ● ● ●●
●●

●●● ●● ● ●● ●●●●
●

● ● ●●● ● ● ● ●● ●●●● ● ● ●●● ● ● ●●●● ●●● ● ● ●●● ● ● ●●● ●●● ● ●●● ●●● ● ●● ● ●● ●●● ●● ●
●

●●●●
●

●●● ● ● ●● ● ● ●●● ●● ● ●●

●
● ●● ●● ●●●

●

● ● ●● ●● ●● ●●

●

●● ●● ●
●

● ●●
●

●● ● ●● ●● ●● ●● ●● ● ●●● ●
●

● ●● ●● ●●● ●● ●●● ● ●
●

● ● ● ●● ● ●● ● ●● ●●

●

●● ● ● ●●●● ●●● ●●●
● ●●● ● ●● ● ● ●● ●● ●● ●● ●●● ● ● ●

● ●● ● ●●●● ● ●●
●

●● ●
●

● ●
●

●● ● ● ●●●● ●● ●● ●● ● ● ●●● ●●
●

●● ● ● ● ●●●●● ●● ●
●

●●● ● ● ●● ●● ●
●

● ● ●

●

●●
●

●●● ●
●

●● ● ● ●● ● ●
●

●● ●● ●● ●●●
● ● ● ● ●● ●●●● ●● ●

●
● ● ●●
●

● ●

●

●●

●

●●● ●● ●
●

●● ● ●● ● ● ●●
●

●●●
●

● ●●●
●

●●● ●●
●●

●
● ●● ●●● ●● ●

● ●

●

●● ●● ●●

●

●
● ● ● ●●● ●● ● ●● ● ●● ●● ●

● ●●
●

●● ● ●●●●
● ● ● ●● ●
●

●
●

●●● ●● ●● ●●● ●● ● ●● ●● ●●

●

● ● ●

●

●●● ●● ● ●●
●

● ●● ●● ●●●

●

●●● ● ●● ●●●● ● ● ●●

●

●
●

● ● ●● ●● ●● ●● ●●● ●● ●●● ●●● ● ●●● ● ●●●
●

●●● ● ●● ●

●
●

●● ● ● ●● ●●● ●●●●
●●● ●● ●● ● ●● ●● ●

●
● ●●●● ●●●

●●
●

●

● ●

●

●●●● ● ● ● ● ●●● ●
●

●● ●●● ●● ●● ● ●● ● ●●●● ●

●

●● ●● ●● ●●● ●● ●● ●●● ●● ● ●● ●● ●●● ●
●● ●● ● ●●●● ● ●

●
● ●

●●
●●●●● ●●● ● ●●● ●● ●●● ● ● ●● ●●

●●
●●● ●●●

●

● ●
●

●●●● ●
● ●●

●
● ●● ●●● ●

● ●●● ●● ●● ●● ●● ●● ●●● ●●● ● ● ● ●● ●●● ● ●●● ●● ●
●

● ●● ●● ●● ●● ●● ● ●●● ●● ●●● ● ●● ●● ●● ●●● ●●● ●● ●● ● ●● ● ●● ● ●● ●● ● ●●● ●

●

● ●●
●

●

●● ●●● ●● ●●
●

● ●●● ● ●

●

● ●●●●● ● ●

●

● ●● ●● ● ● ●● ● ●● ● ●
●

● ● ●● ● ●

●

●● ● ●●● ● ● ●● ● ●● ●

●
●

● ●

●

● ●●●●● ●● ● ●● ● ●●● ●● ●●●
●

●●● ●
● ●●

●

●

●

● ●
●

●

● ●●
●

●● ●● ● ●● ●

●
● ● ●

●

● ●●● ●●● ●● ●● ● ● ●●● ●●● ●●● ●● ● ●●● ●● ●● ●● ● ●● ●
●

● ●● ●● ●● ●● ● ●●● ●●● ●
● ●

●●● ●●●● ●
●

●

●

● ●● ●● ● ●●
●

● ●● ●●● ●● ● ●●● ●●●● ●● ●
●

● ●● ● ●

●

●● ● ●● ●● ●●●●●●● ● ●●● ● ● ●● ●● ●●
●

●●
●

●●●

●

● ● ●● ● ●● ● ● ●●●●● ●
●

●● ●● ● ●● ●● ● ●● ●● ●● ●●●● ●● ●

●

●● ●● ●● ●● ●●
●

●● ●●

●

● ●●
●

●● ●●●● ● ●● ●
●

●● ●● ● ●●●●● ● ●●●●● ●● ● ●● ● ●●● ●● ●●●● ● ●● ●●● ● ●●
●

● ●● ●●●● ● ●
●

●●●● ●● ●● ●● ●● ● ● ●● ●● ●●● ●●

●

● ●●●● ● ●●● ●● ●
●

● ●● ●● ● ●● ●●
●

● ●●● ●

●

● ● ●●●●● ●
●

● ● ●
●

● ●●● ●● ● ●●● ●● ●●● ●●●●● ●● ●●● ● ●● ●

●

●● ●●● ● ●● ●●● ●●● ●
●

●●● ●●

●

●● ●● ●● ●● ●● ● ● ●
●

●●● ●●● ●●● ● ●●●● ● ●● ● ● ●● ●● ●● ●● ●●
● ●

●
● ●●● ● ● ●

●
● ● ●● ● ●

●
● ●●● ● ●● ●● ●

●
●● ● ●

●

● ● ●● ● ●●● ●

●

●

●

●
●●● ●● ●●● ●●● ● ● ●●● ● ●

●
● ●● ●● ●●●

●
●● ●●● ● ●● ●● ●● ● ●● ●

●

●
● ●

●● ●●● ● ●● ● ●
●

●

●● ● ● ●●● ●● ● ●● ● ●●●

●

●

●

●●
●

●
●●● ● ●●● ●●

●● ●●● ● ●● ●●● ● ● ●●●●● ● ●●● ● ●●●● ●●
●

● ● ●● ● ●● ●●

●

●● ●●●

●

●● ●● ●● ●● ● ●● ●● ● ●● ●● ●
●

●● ●●●

●

●●

●

● ●● ● ●●
●

●● ● ●● ●●● ● ●●●● ●●● ●●● ●●●● ●
●

● ● ●● ●

●

● ●●●●

●
●

●●● ● ●● ●● ●●● ●● ● ●● ●● ● ●● ●●● ● ●● ●● ● ●● ●●●● ● ●

●

●● ●● ●●●●● ●● ●●● ●● ●● ● ●●● ●●
●

●●● ●●● ●

●

●●● ● ●●

●

●●● ●●●● ●●●

●

● ●●● ●●● ● ●● ●
●

●

●

● ●● ● ●●● ●● ● ●●

●

●●● ●●● ● ● ●●●

●

●●●● ●
● ● ●

●
● ●● ●

●
● ●● ● ●● ●● ●●●● ● ●●● ●● ●● ●● ● ●● ●● ● ●

●
● ●

●
● ●

●

●

●

● ●● ●●● ●●● ●● ●● ●●● ● ●● ● ●●● ●

●

● ●
●

●●
● ●

●

●●● ● ●● ●● ● ●● ●●
●

●●● ●● ●
●

●● ●●● ● ●● ●●
●

●● ●●● ● ●● ●●● ●●●● ●●● ● ●●●● ● ● ●● ●
●

●● ●●
●

●● ●
● ●

●
●● ● ●●● ● ●●● ●

●
● ●●● ●●

●

● ●● ●●
●

●

●

●● ●● ●●●
●

● ●
●

●● ● ●● ● ●● ● ● ● ●●● ●●● ●● ● ●●
●

● ●● ● ● ●
●

●● ● ●●● ●●

●

● ●● ●● ●● ● ●● ●● ● ● ●●● ●● ● ●●●● ●●● ●● ●● ● ●●●● ●●● ●● ● ●● ●●
●

●●● ●● ● ●● ●●

●

● ●●●
● ●●●● ● ● ●●● ● ●● ●●● ● ● ●● ●● ● ●●● ● ● ●● ●● ● ●●● ●●●● ● ●

●
● ●● ●●● ●●● ●

●

● ●● ● ●● ● ●● ● ● ●●●● ● ●●●● ●● ●●

●

●● ●

●

●

●

●● ● ● ●● ● ●
●

● ●●● ●
● ●● ● ● ● ●● ●● ●

●
●● ●

●

●●● ●●●● ● ●● ●● ●●● ● ●●● ● ● ●
●

●●● ●●●

●

●● ●● ● ● ●
●

●● ●●● ● ● ●
●

● ● ●● ●●● ●●● ●●● ●● ●
●

● ●●● ●● ●● ●
●

●● ●● ●● ●
●● ● ●●● ● ●● ●●● ●●● ●● ●●● ● ●● ●●●

● ● ●●
●

●
●

● ● ●●
●

● ●
●

● ●●● ●● ●

●

●● ●● ● ●● ●● ●● ● ●●●●
●

●

● ●● ● ●● ●● ●● ●● ●

●

● ● ● ●●● ●● ● ●● ●
●

● ●●
●

● ● ●●
●

●●●● ● ●● ●● ●● ●● ●●●● ●●● ●● ●●● ●●● ●
●
●● ●● ● ●●● ●●● ●

●●●●●● ●●● ●●● ●● ●●●● ● ●●●●●● ● ● ● ●●●●●● ●● ●● ●● ● ● ●●●●● ●● ●●● ● ●●● ● ● ●
●

● ●●● ● ●●● ● ● ●

●

● ●●●●● ●●
●● ● ●● ●● ●● ● ●● ● ●● ●● ●● ●●● ●● ●● ●● ●● ● ●● ●●● ●● ●●● ●●

●
● ●● ● ● ●

● ● ●● ●●
●

● ●

●

● ●● ● ●● ● ●●● ●● ●● ●
●

●● ●● ●
●

●●●● ● ●● ● ●●

●
●

●● ●● ● ●●● ●● ●

●

● ●● ● ●● ●

●

●●● ● ●

●

● ●● ●● ●● ●●●●● ●

●

●● ●●●
● ●

●● ● ●● ●●● ●● ● ●●

●

●● ● ● ●● ●
●

● ●● ● ●●
●

●● ● ●●●

●

● ●● ●
●

● ● ●● ●●●●● ●●● ●● ●●● ●● ● ●●● ● ●● ●● ● ●● ●● ●●● ●● ●● ● ●
●

● ●●●
●

●● ●●●● ●● ● ●●● ●● ● ●
●●

●● ●●
●

●● ●● ● ●●●● ● ●● ●●● ● ●●● ● ● ● ●● ●●●● ●
●

● ●●● ● ●●● ●● ● ●● ●●● ● ●● ●

●

● ●● ●●

●

●● ●●●
●

●● ● ●● ●● ●●●● ●

●

●● ●● ● ●●● ● ●● ●●
●

● ●● ●●

●

●●● ●● ●● ●● ●● ●●● ● ●●●●● ● ●● ●● ●

●

●●● ● ●●

●

●
●

● ● ●● ● ●● ●●● ●● ● ●● ● ●● ●●● ●●●● ● ●●● ●● ●
●

●

● ●● ●● ●

●

●●● ●●● ●● ●● ●●● ●● ● ● ●●● ●● ●● ● ●●

●

●● ●●● ●●● ● ●●● ●

●

● ● ●●●● ●●●

●

●●

●

● ● ●●● ●●●
●

●
●

● ●●
●

●● ●●●● ● ●●● ●● ●●●● ●● ●● ● ●● ●●● ● ●●● ●● ●●●
●

● ● ●●●●●●● ●● ●● ● ●●●●● ●●●● ●● ●
●

● ● ●●● ● ●● ● ●●
●

● ●●● ● ●
● ●● ●● ●

●

●● ●●●● ●●● ● ●● ● ●● ● ●

●
●

● ● ●●● ● ●● ●● ● ●●

●

●●● ● ●● ● ●
●

●

●

●

●

●

● ●●● ● ●●● ●
●

●●
●

●

●

●

● ●● ●●● ●● ●● ●●●● ●●●
●

●●● ●

●

● ●
●

●●

●
●

● ●● ●●● ●
●

●● ●● ●● ●●●● ●●● ●● ●● ● ●● ● ●

●

●
●

● ●

●

●
●●●● ● ●

●

●

●● ●
●

●●●●● ● ●●● ● ●●

●

●

●
●

●● ●●● ●● ●● ●●● ● ●●● ●●● ● ●● ●● ● ●● ● ●● ●● ● ●● ●●● ●●● ●● ● ● ●●●
●

●● ● ●● ●●●●●● ●●

●

●● ● ●●● ●
●

● ●
●● ●● ● ●● ●● ● ● ●● ●●●● ●●● ●●● ●● ●●● ●● ●● ●● ● ● ●● ●

●

● ●●● ●● ●●● ● ●●●

●
●

●● ●● ●● ●●● ●● ●● ●●● ●●●

●

●● ●●●●● ●●● ● ●● ●●● ● ●●● ●● ● ● ●● ●● ●
●

●
●

● ● ●●
●

●● ●● ●●
●● ●

●● ●●● ●●

●

●● ●●●● ●●●●●● ●●●

●

●
● ●●● ●● ●● ● ●● ● ●●● ●●●● ● ●●● ●● ● ●●● ●● ●● ● ●● ●●●● ●●●● ● ●● ●● ● ●●● ●

●

● ●●

●

●●●
●

● ● ●●● ●
●

● ●
● ● ●● ●● ●● ●●

●

●●●● ●●● ● ●● ●● ● ●

●

●●●

●

●
●

● ●

●

●●●●
● ● ● ●

●●
●● ●●● ●● ●●● ●●● ●● ● ●● ● ●●●●● ●● ●● ●●●● ● ●●●● ● ●●

●
●

●
●● ●● ●●● ●

●

● ●● ●●
●

● ●●● ●● ● ●●● ● ●●● ● ●
●

● ●●
●

●

●

●● ●●● ●●● ●● ●●● ● ●● ● ●● ●●●

●

● ●●● ●● ●●● ● ●●● ●●● ●●
●

●●●

●

● ●● ●● ●
●

●● ● ●● ● ●●

●

●● ●● ●● ●● ●● ● ●●

●

● ●● ●●
●

●
●● ●

●
●● ● ●

●
● ●● ●●

● ●
● ●●● ● ●●● ● ●●● ● ● ●● ●

●

●
●

● ●●● ●

●

●● ●● ●● ●● ●●● ● ●● ●● ● ●●● ● ●● ●● ●● ●● ● ●●● ●●● ●● ● ●● ●● ●● ● ●● ●● ● ●●●●● ●

●

●● ●● ●

●

●● ● ●●●● ●● ●●● ●● ●●● ●●● ●● ●● ● ●● ●●●● ● ● ●● ●● ●● ●● ● ●● ●
●

● ●● ●● ●

●

● ●● ●● ●●● ●● ● ● ●●● ● ●●●● ● ●● ●● ●● ●● ●● ●● ●●● ●● ●●●● ● ●● ●●●●● ● ●
●

● ●●● ●● ●●● ● ●●● ●●

●

●● ●
●

●● ● ●●● ●● ●●●
●

●● ● ●●

●

●● ● ●●●● ●● ●
●

● ●● ●● ●● ● ●●● ●● ●● ●● ●●● ●●● ●●●

●

●● ●● ●● ●●● ● ●●
●

●
●

● ●●● ● ●●
●

●● ●● ●● ●● ●●● ●

●

●
●● ●● ●●●● ●●● ● ●● ●●

●

●
● ●●●●● ● ● ●●● ●●

●

●● ● ●●● ● ● ●● ●●

●

● ● ● ●● ●●● ● ●●● ● ●● ● ●● ● ●● ●●● ● ●●●

●

●● ●

●

● ●● ● ●●●●● ● ● ●●

●

●●
●

●
● ●● ●● ●

●

●● ● ●● ●● ● ●●● ●
●

●● ● ●●●● ● ●
●

● ● ●●

●

●●● ●● ●●
●

●● ●● ●●

●

●●● ● ● ● ●● ●●●● ●

●

●● ●● ●● ●●
●

● ● ●● ●● ●●

●

● ●● ●● ●● ●●● ●● ● ●● ●● ●●●● ● ●
●

●●●● ● ●●● ●●● ●● ● ●● ● ●●● ●●●●
●●● ●● ●●●● ●● ●● ●●● ● ●● ●●

●
● ●●●●● ● ●●● ●●

●

●

●●

●● ● ●●
●●

●● ●●● ●●● ● ●● ●● ●● ● ●●●● ●
●

● ●● ●●●●● ● ●●
●

●● ●● ●● ●● ●● ●●●●
●

●● ●● ●●● ●●● ●● ●● ●● ●
●

●● ●● ● ●●●● ●●

●

● ●●● ● ●●●● ●● ●● ● ●● ●● ●● ●● ●● ●● ●●● ●●
●

● ●●●●●●● ●● ●● ● ●●●

●

● ● ●● ●● ● ●
●

● ● ●●● ● ●●● ●● ●
●

●●● ● ● ●●● ●●
●

●● ● ●●● ●● ●● ●●● ●●

●

●●●● ● ●
●

● ●●
●

●●● ●●● ●● ● ●● ● ●●●●
●●

●
●● ●●●

● ● ● ●● ● ●● ●● ●● ●●● ● ●●●● ● ● ●● ● ●
●

● ●
●

● ●● ● ● ● ● ●
●

●●●● ● ●● ●●

●

●● ●● ●● ● ●●●●● ●● ●●● ● ●●● ● ● ●

●

● ●● ●

●

● ● ● ●● ●●● ●
●

●● ●
●

●
●

●
●● ●● ●● ● ●●● ●● ●● ●

●

● ●● ● ●●● ● ●●● ●

●

●● ●● ●● ●
● ● ●

●

●● ●●● ●●● ●● ●● ● ●● ●● ● ●● ●

●

● ●
●

●●● ●
●

●●

●

●
● ● ●●●●● ● ●●●

●
●●● ● ●

●
●● ● ●●● ●● ●● ● ●●

●
●●

●
●● ●●

●
● ● ●● ● ●● ●●● ● ● ● ●●●● ● ●● ● ●● ●● ●●●

●● ●● ●● ●● ● ●● ●● ●●● ● ●●● ●● ●

●

●
●

● ● ●● ●● ● ●
●

● ●● ●
●

●● ●●● ●● ●
●●

●● ● ●● ●
●● ●● ● ●● ●● ●● ●

●
● ●● ●● ●● ●● ●●● ●● ●● ●

●

●

●
● ●● ●●● ●●

●● ●

●

●●● ●● ●● ●
●● ●●● ● ● ● ●● ●● ●● ●● ● ●●● ● ●●● ●●●●● ●● ● ● ●● ●● ●● ●● ●●● ●● ●● ●● ● ●●● ● ●●
●

●

●

●● ●● ●
●

●● ●● ● ● ●●● ● ●● ●● ●● ●● ●
●

●●

●

●● ●● ●● ●●● ● ●● ●●● ●●

●

● ●●●●●● ● ●

●

● ● ●●●
●

●
● ●● ●● ● ●● ●● ●

●
●● ●●● ●● ●●

●

●
●

● ●● ●●● ● ●● ● ● ●●● ● ● ●●●●
●

● ● ●● ●● ●●●
●● ● ●● ●●● ●● ● ●●● ●● ●

●
● ● ●● ●● ●● ●●

●

●●● ● ●● ●● ● ●● ●●● ● ● ●● ● ●●● ● ●● ●● ● ●● ● ● ●●● ●●● ●●
●

● ● ●●

●

● ●● ●● ●● ● ●

●

●● ●●● ●● ●● ● ●●●● ●

●

● ●● ● ●● ● ●●● ● ●
●

● ●●● ● ●●●● ● ●● ●
● ●

●
●● ● ●● ●●●● ● ●●●●

●

● ●● ● ●● ●● ●●● ● ● ●● ●●●● ●●● ●● ●● ●●

●

● ●● ●●●●● ●●● ●● ●● ● ●● ●
●

●

●

●● ● ●●
●

●
●

●

●

●● ● ●●●● ●●● ● ●
●

● ● ●● ● ● ●● ●●● ●●
●

● ●●●● ●● ●●
● ● ●● ●●● ●●

●

●
● ● ●● ●● ● ●● ●●●● ● ●● ●● ●●● ●● ●● ●● ●● ●

●●
●● ● ● ●●● ●

●

●●

●

● ●● ●●●● ● ●● ●●● ●●● ●
●

● ●● ●● ●● ●● ● ●● ●

●

●
●

●

●● ● ● ●●● ● ● ●● ●●●
●

● ●● ● ● ●● ●●● ●● ●● ●●● ● ● ●●●● ●●●● ●●● ● ● ●●

●

●● ●● ●● ● ●●● ●●●● ●

●

●● ●● ●● ●●
●

●● ●● ●●● ● ●● ●● ●● ●● ● ●● ●●● ●● ●● ●● ●●● ● ●● ●●●

●

●●
● ● ●●● ● ●●●●●

●
●

●
● ●●● ●●● ●●● ●● ●● ●● ● ●●● ●● ●●● ● ●● ●●

●●
● ● ●● ●● ●● ●● ●● ● ●● ● ● ●●● ● ●●● ● ●●● ●● ●●●●

●
● ●● ●●●●●

●
●

●

●●●

●

●● ●● ●● ● ●●● ●

●

● ●● ●● ●●● ● ●● ●● ● ●●● ● ●●
●

●●● ●● ●●● ●● ● ●●
●● ●● ●● ●●

●
●●

●
●● ● ● ●●● ● ● ●● ●● ●●

●

●● ● ●● ●● ● ●●● ● ●● ●
●

● ●●● ● ●● ●● ●● ●●● ●●● ●●● ●● ●● ●●

●

●● ●● ●● ●●●● ●●

●

●●
●

● ●
●●

●● ● ●● ●● ●●●

●

●● ● ●●
●

● ● ●●●●● ●●● ●● ●● ●● ●●●● ●●●● ●●● ●●●
●

● ●

●

●● ●●● ●●

●

●● ●● ●● ●● ●● ●

●

● ●● ● ●● ● ●●●● ● ●

●

●● ●
●●●● ●●

● ● ●● ●●●●●● ●

●

●● ● ●● ● ●● ●●● ●●●● ●●● ● ●● ● ●●

1024
BIN 0

75

BIN 1

32

BIN 2

13

BIN 3

0
128
256
384
512
640
768
896

1024
1152
1280

0 32 64 96 128 160 192 224 256
Packet Criticality (8b)

P
ac

ke
t D

el
ay

 (
C

yc
le

s)

(c) Hoplite-Q

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●

● ●●

●

● ● ●● ● ●

●

●

●

● ●

●

●● ●
●

●●

●

● ●● ●

●

●● ●
●

●●
●● ● ●●● ●●

● ●●● ●●● ● ●● ●● ●● ●● ●● ●

●

● ●●

●

●● ●

●

● ●●●

●

● ● ●●● ● ● ●● ●● ●● ●● ●
●

●●

●

●●●
●

● ●● ●
●

●● ●●●

●

●
●

●

●

●

●

●

●
● ● ●

●

●

●
●

● ●●● ●●● ● ● ●●● ●

●

●

●

● ●● ●

●

●●

●

● ● ●
●

● ● ●

●
●

●

●

●

●

●
●

●

●

●● ● ●● ●

●

●

● ● ● ●●● ●●●
●

●

●

●
● ●

●
●

● ● ●●

●

●
●●●

●
●

●

●
● ●●●● ●

●

● ● ●
●

● ●

●

● ● ●● ●●●●

●

●● ● ●●● ● ●

●

●
●

●

●●● ●
●●

● ●●

●
●

●

●

●

● ●● ●
●

●●

●

●

●

●
●

●

●

●● ● ●

●

● ●

●

●
●● ●● ●● ● ●● ● ●●● ●●

●
●● ●●● ● ●

●
● ●

●

●● ●
●

●

●

●

●
●

●

●

●● ●●

●

● ● ●●●● ●

●

●

●
●

●● ●●

●
●

●
●

●●● ● ●
●

●

●●●● ●●
●

●● ● ● ●● ●●

●

● ● ●●
●

● ●

●

●

●

● ● ●●● ● ●●●

●

●
●

●●

● ●

● ●

●

●

●

●
●

●

●

● ●●●●●● ●●● ●● ●● ● ●
●

●

●

● ●

●●●●
●●

●

●
●

● ● ●●

●

● ● ●●

●

●● ●● ●●

●

●● ●

●

● ● ●●●

●

● ●● ●●● ●●● ●● ● ●● ●●

●

●

●

●

●
●

●
●

●

●
●

●

●● ●

●

●● ●
●

●

●
● ● ●

●
●●

●

●

●● ●

●

●●● ●
●

●●

●

● ● ●

●

●

●

●

●● ●● ● ●●●

●

● ●●

●

●
●

●
●
●●

●

●●

●
●

●

●● ●●

●

● ●●● ●●● ●●

●

●
●

●

●

●● ●

●

● ●●

●

●

●

●

●

●
●

● ● ●

●

●●●●● ●
● ●

●

●●●

●

●
●

●
● ●●●●

●

●

● ● ●●●● ●

●

●●● ●

●

● ●
●

●

●

●●
●

●●●
●

● ●●● ● ●
●

●

●

●
● ●

●

● ● ●
●

●

●

●

● ●

●

● ●● ● ●●
●

●

● ●

●

● ●● ● ●●

● ●

●●

●

●

●

●

●

● ●● ●● ●●●

● ●

● ● ●

●

●●● ●●

●

● ●

●
● ● ●●● ● ●● ●●

●

●
●

● ●● ● ●
●

●● ●● ●
●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

● ●● ● ●●●

●

● ●●● ● ●●● ●●

●

●

●

●● ●● ●

●

●●●

●

● ●
●

●

●

●●●

●

●● ●●
●

●

●

●●

●
●

●

●

●● ●
●● ●●● ●

●
●

●

●● ●

●

● ●●● ●

●

●

●
●

●
●●

●

●●● ●

●

●

●●

●

● ●●●●●● ●

●

●● ●●

●

●
●●●

●

●

●

●

●

●

●
●

●
● ●●

●
● ●● ●

●

●

●

●

●

●●● ●●●● ●

●

●●

●●

● ●

●

●● ● ● ●●

●

●● ●● ●● ●●

●

●●
●

●

●

● ●● ●
●

●● ●● ●●● ●● ● ●●
●

●●

●

●

●

● ●

●

●

●

●

●●

● ●●

● ●●●

●

●
●● ● ●

●

●

●

●
● ●

●
●● ●

●

●
●● ● ● ●●● ●●

● ●

●

● ●●●● ●

●

● ●●
●

●

●

● ●● ●● ● ●●● ●●

●

●●

●

● ●

●

●
●

●

●

●●

●

● ●

●

●●●

●

●
● ●● ●

●

●●

●

●

●

●● ●● ● ●●

●

● ●●

●

●●
●

●●

●

●● ●● ●

●

●

● ●

●

●

●

●
●●

●● ● ●● ●●

●

●
●●●●

●● ●● ● ●●● ● ● ●●● ●● ●●

●

●●

●
●

●
● ● ●

●

● ●

●

●●

●

●● ●●●● ● ●

●

●

● ●
● ● ● ●● ●

●
●● ●●

●
●

●●
●● ●● ●● ●

●
●● ● ●●●● ●

●

●
●

●

● ●●
●

●

●

●
●

●

●

●
●

●

●

●

● ● ●● ●

●

●
● ●

●

●
●

●

●

●● ●

●

●●

●

●

● ●
●

●●

●

●● ●●● ●

●

●

●●● ●● ●●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●
●●●

●

●

●

●
●● ●●

●
●● ●

●

● ●● ●●

●

●

●

● ●●●

●

●●

●

● ● ●

●

●

●● ●

●

●● ●

●

● ● ●

●

●

●

●●● ●

●

●

●

● ●● ●● ●
●●

●

●

●

●

●
●

●

●
● ●

●
●

●

●
●

●● ●●● ● ●

●
●

●

●

●

●

●● ● ●

●

●
●● ● ●●● ●●●

●

●

● ●

●

●● ●● ●

●

● ●
●

●● ●● ● ●● ●●● ● ● ●●● ●●●●

●

●

●

●

●
●

●

● ●●
●

●● ●
●

●

● ●● ●●● ● ●

●

●

● ●●

●

●
● ●

●

●●●

●

●● ●●

●

●

●●● ●

●

●●●● ●● ●●●

●

●

●●

●

● ● ●● ●
●

● ●● ●●● ●

●

●

●

●●●

●

●● ●● ●
●

●● ●●● ● ●

●●

●
●

●

●

●

●

●●

●

● ●●

●

● ●● ●

●
●

●

●

●●●

● ●

●

●

●

●

●

● ●
●

● ●

●

● ● ●
● ●●

●

●
●

●

● ●●

●

● ●●
●●

●

●

●●● ●
●

●● ●

●

●●
●

●● ●●

●

●

●

● ●

●

●

●

●

● ● ●● ●●● ● ●

●

● ●●

●

●●

●●

●

●● ●
●● ●

●
●●● ●●

●

●● ● ●●● ●

●

●
●

● ●

●

● ● ●● ● ●●

●

●

●

●

● ●

● ●●
● ●

●

● ●
●

●●

●

●

●

● ●

●
● ● ●

●

●● ●

●
● ●●

●
● ●

●

●● ●●●● ●

●

●● ●

●
●

● ● ●

●

●● ●●

●

●● ●

●

● ●●
●●

●
●

●

●

● ● ●
●

●●

●

●
●

● ●

●

●

●

●
●

●●● ● ●
● ● ●

●

● ●

●

● ●
●

● ● ●
●

● ●●●

●

●
●

●

●

●

●

●

●●●

●

●

●
●

● ● ●

●

●●●● ●
● ●

●

● ●● ●
●

●

●

●

●

●

●

●
●

●

●

● ●●

●

● ● ●●● ●

●

●

●

●
●

●
●● ●●

●● ●● ●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ● ●●

●

●

●

●

●

●

●● ● ●● ●●● ●

●

● ●

●

●● ●

●

● ●●
●

●●

●

●● ● ●●●● ● ●●●●

●

●

● ●● ● ●
●

●

●

●

●

●

●●●

●

●●

●

●● ●

●

●

●

● ●●●

●

●● ●

●

●

● ● ●●● ●● ●

●

●
●

●

●

●
●

●

●

●

●● ● ●●● ● ●
●

●
● ●

● ●

●

●●● ●● ●● ●● ●● ●●●
●

●
●

●●● ● ●
●

●
●● ● ●●● ● ● ●●

●

●●
●

●
●

●● ●
●

●

● ● ●● ●

●

● ●●● ●
● ●

● ●●● ●
●

●
●

●

●

●

●

●

●
●

●

●
●

● ●
● ●

● ● ●● ● ●

●

● ● ●

●

●● ●●

●

●●
●● ●● ●

●

●

●● ●

●

●

●

●

●

●●●● ● ● ●● ●

●

●
● ● ●

●
●●

●

●

●● ●●●

●

●● ●● ●

●
●

●
●

● ●
●● ●

●

●

●
●

● ● ●●● ●●
●

●

●●
●

●
● ●●

●

● ●

●

● ●● ● ●

●

●

●

● ● ●●●●

●

● ●● ●● ● ● ●●● ●

●

●
●●

●●●

●

●
●● ●● ●

●
●

●

●●● ●

●
●

●● ●● ●●●● ● ●

●

● ●

●

●
● ●●● ●● ●●●

●

●
●

●

●

●●

●

●

●

●
●
●●

●

● ●● ●

●

●

●

●

●
●

● ●
●

●● ● ●● ● ●

●

●● ●

●

●
●

●

●
● ● ●●

●

●● ●●

●

●●●

●

●

● ●

● ● ●●

●

●

●● ● ●● ●

●

●

●

●

●● ●●●● ●●● ●● ●
● ●

●

● ●●● ● ●●

●

●
●

●

●

● ●●●

●

● ●● ●●●● ●● ●

●

●● ●

●

●

● ●
●

●
●

●
●● ●●

●

●
●

●

●

●

●

● ●●● ● ●●● ●

●

●

●●

●

● ●●

●

●

●

●● ●●● ●

●

●●
●

●●●

●

●
●●

●
●●

●

●

●●
●

●
●

●

● ● ●●
●

●●
●

● ●

●

●● ●●● ●

●●

●● ●●●●●
●● ●

●
●

●
●

●●● ●
● ●

●● ● ●

●

●
●

●● ●
●

●

●

●●
●

● ●

●

●●● ●

●

●
●

●

●
●

● ● ●● ●●●

●

●

●

●

● ●● ●● ● ●

●

● ●●
● ●●

●

●●
●

●

● ●

●
●

● ●

●

●● ●

●

●●
●

● ●● ●●
●

●●● ●● ●●●

●

●

●

●●

●

● ●
●

●

●

●

●

● ● ●

●

●

●
●

●

●

●
●

●●
● ● ●● ●● ●● ● ●●● ● ●

●

●

● ●

●

●●●● ● ●●●● ●
●

● ● ● ●
●

● ● ●●●●
●

●

● ●●

●

● ●●

●

●

●

● ●●

●

● ●

● ●

●●● ● ●●●● ●

●

●
●

●● ●

●

●

● ●●
●

●

●

●
●● ● ●●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●
●● ●● ●

●

●

●
●●

●

●

●● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●● ● ●● ●
●●

●

●
●

●
●

●
●

●

●
●

●

●

● ●
●

●●● ●● ●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●●● ●

●

●
●

● ●● ● ●● ●

●

●●●
●

●

●

●
●

●● ●● ●● ●
●● ● ●

●

●●

●

●● ●● ● ● ●● ●● ● ●

●

●

●
● ●

●●
●

● ●

●

● ●
●

●

●

●

●●

●

● ●

●

●

●

●
●

● ●

● ●●

●

●●●● ●● ●●● ●●

●

●●● ● ● ●
● ●

●●

●

●

●

●
●● ●●●

●

●

●

●
●

●

●

●

●

● ● ● ●●

●

●● ●●
●

●●

●

●

●

● ●● ●●

●

● ●● ● ●

●

●
● ●● ●● ●●● ●● ●

●

●

●

● ●
● ●●

●

●

●
●

●

● ●

●

●● ● ●● ●
●●

●

●● ●
●

●

●●
●

●

● ●● ● ● ● ●

●

●

●

●●● ●● ●

●
●

●

●

●●●

●

● ●●

●

●

●

● ●
●● ●● ●

●
● ● ●●

●

●

●
●

●

● ● ●●
●

●

● ● ●●● ● ●● ●
●

● ● ●

●

●

●

● ●●

●●

● ●●
● ●●

●

●

●●

●

●

●

●
●

● ●●
●●

●
●

●

●
● ●● ●

●

●
●

●
●● ●

●

●

●● ● ● ●●

●

●

●●

●

●
●● ●● ●● ●● ●●●

●

●● ●● ●●

●

●

● ●●
●

●

● ●
●

●●● ● ●

●

●●

●

● ●● ● ●●● ● ●●●● ●● ●●●● ● ● ●●● ●

●

● ● ●

●

●●
●

●●● ●●

●
●

●

● ● ●

●

●●

●

●

●

●

● ●● ● ● ●

●

●●● ● ● ●

●

●

●● ● ●

●

● ● ●

●

●

●

●

●

● ●● ● ●

●

●● ●● ●●●●
●●

●● ●● ●

●

●●●

●

●

●

●

●

●●●

●

● ●● ● ●●● ●

●

●●● ● ●●
●

●

●

● ● ●●

●

● ●● ● ●
●●

●●● ● ●

●
●

● ●●● ●

●

●●

●

● ●●●● ●●● ●● ● ●

●

●

● ●

●

●

●

●● ●●●●● ●●●● ●● ●

●

● ● ● ●
●

●
● ● ●●

●

●●
●

●

● ●●●

●

● ●●

●

●

●

●● ●
●●

●

●

●
●

●
●

●●

●

● ●●
●

●

●

●● ●● ●●
●

●

●

●
●

●

● ● ●● ●●●

●

● ●

●

● ●●● ●●● ●

●

●

● ●●
●

●●
●

●

●

●● ●

●

●

●

● ●
●

●

●● ●● ●●

●
● ●

● ● ●●●

●

●

●

●
●

●
●

●●● ● ●
●●●● ●

●

●●
● ●●

●

● ● ●● ●●

●

●

●

● ●
●

●
●

●
●

●
● ●●●● ● ●

●

●

●

●

●● ●●● ● ●● ●● ● ● ●● ● ● ●
●

● ●
●

●

● ●●● ●

●

●
●

●

●

●

● ●● ●

●

●

●
●

● ●

●

●● ●

●

●

●● ● ●● ●●
●

●● ●

●

●●● ●

●

●

●

●

●

● ● ●●●

●

●●●● ●●● ●●

●

● ● ● ●● ●●

●

● ● ●

●

●● ● ●

●

●

●

●

●

●● ●● ● ●
●

●● ●● ●● ●●●
●

●● ● ●

●

●

●●

●

●

●

● ●●● ●●

●

●

●

●● ●● ●
●

●

●● ●●●

●

●

●

●

●

● ●● ● ●●●● ● ●● ●
●

●

●●
●

● ●
●

● ● ●
●

●

●●

●

● ●● ●● ●● ●● ● ●●

●

●

● ●

●

●
● ●● ●●●● ●

●
●

●

●

●● ●

●

●● ●●● ●●● ● ● ●

●

●●●

●

● ●
● ● ●●● ●

●

●
●●● ●

●
●

●

●

●
●

●

● ●

●
● ●●● ● ●

●

●
●

●

●
●

● ●

●

● ●●
●

●

●

●

● ● ● ●● ●● ●

●
● ●● ●●● ●

●

●
●

● ●●
●

●

●

●●● ● ●● ●●●● ●● ●●

●

● ●

●●

● ●●
●

●
●

●●

●

●●

●

● ●● ●
●

●●
●

●● ●●

●

●
●

●

●

●

●

● ●
●

●
●

●

●●●●
●

● ●● ● ●
● ● ●●●

●
●● ● ●● ●●●

●
● ●●

●

●

●

●●● ●
●

●

●

●

●

●
●●

●

●

● ●●
●

●

●

●●● ●● ●● ● ●●

●

● ●

●
●

●
●

●

●● ●●●

●

●●●

●

●

●

●

●● ●●●

●

●

●

●● ●

●

●

● ●●● ●●●

●

● ●

●

●
●

●

●

●
● ●●

●

● ●

●

●

● ●●● ● ●

●

●
●

●

● ●

●

●

●

●

●

●

●●●●
●

●

●

●
●

●

●

●

●

●

●

● ●● ●● ●

●

●

●

● ●

●

● ●● ●
●

●

●

●

●

● ●●●● ●●

●

● ●● ●

●

●●● ●

●

● ●● ●

●

●

● ● ● ●● ●● ●● ●

●

●

●●

●

●

●

●

●●
●

●

●

●

●
●●

●

●
● ●●●

●●● ●

●

●
● ● ● ● ●

●

●
●

●

●●●

●

● ●
●

●
● ● ●

●

●

● ●●
●

●

●

●

●

●

●

● ● ●●

●

● ●

●

● ●

●

●● ●

●
●

●

●

●●●

●

●● ● ●

●

● ● ●
●

●

●●● ●

●

●

●●

●

●

●

●
●

●

●
●

● ●●●● ●●

●

●
●

●

● ●

●

●

●

●
●●● ●●

●
●●

●

●

●

● ● ●●
●

●●

●

● ●
●

●
●

● ●

●

● ●

●

● ● ●

●
● ● ●●

●
●

●

●
●

●

●●●●
●

● ●
●

●

● ●

●

●
● ● ● ●

●

● ●● ●●
●

●●●

●

●●
●

● ● ● ●●
●

●

●

●

● ●

●

●●●

●
●

●

●

● ●● ●●

●

●●●● ● ●
●

●● ● ●●●●●●

●

●

●● ●

●

●● ●
●

● ●●

●

● ● ●●● ●

●

● ●

● ●
●

● ●

●

● ●
●

● ●● ●●

●

●

● ●

●● ●
●

● ●● ●●●●

●

● ●

●

● ●●● ●● ●●● ● ●● ●●

●

●●

●

●● ●● ●●
●

●

●●

●
●

●
●

●● ●● ●● ●
●

●●●●

●

●

●

●

●

●

●

● ●

●

●

●● ●● ●

●

● ●●●
●

●

●

●●● ●

●

●

●

● ●

●

●

●
●

● ●
●

● ●● ●●

●

● ●

●

●

●● ● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
● ●●● ●

●
●

●

●

●

● ●

●

●● ●● ●

●

● ●

●

●

●●

●

● ●●
●

●

●

●
●

●

●●

●

●

●

●
●

●

● ●● ●● ●

●

●

●

●

●● ●

●

●

●

●

●● ●●●● ●
●

●

●● ●●● ●

●

●●● ●● ● ●

●

●●

●

● ● ●● ●● ●●

● ●

● ●

●

●

●

●

●

●● ● ●●
● ●

● ●●● ● ●● ● ●●● ●● ●● ●
●

● ● ●●● ●●
●● ●● ● ●

●

●● ●

●

●

● ● ●●●● ● ● ●●

●

●

●

●

●

●●
●

●
●

●

●●

●

●
●●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●● ●

●
●

●●

●

●
●

●
● ● ●

●

●●●●●

●

●

●

●

● ●● ●●

●
●

●● ●

●

● ●●
● ●●● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●

●

● ●● ●● ●●●

●

●

●

●●

●

● ● ●●● ●

●

●●

●

●

●

●
● ●●● ●

●

●
● ●●

●

●●●● ●● ●

●

●● ●

●

●

● ● ●

●

●● ● ● ●

●

●●

●

●

●

●

●
●

● ●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●●
●

●
●

●

●●
●

●●● ●● ● ●●● ●● ● ●

●

●

●

●
●

●● ●●

●

●●

●

●
●

● ●●● ● ● ●● ●●

●

● ●●●

●

●● ● ●●

●
●

●

●●

●●

●● ● ●● ●● ●

●

●●
●

●

●●● ● ●● ●● ● ●●

●

● ●

●

●
●

●● ●●

●

●

●

●● ●●● ●

●

●
●

●

●

●●● ●●● ●
●

●

●

●● ●● ●● ●● ●● ●
●

●

●● ●●
●

●
●

● ●●●●
●● ●●

●

● ●

●

●

●

● ●
● ● ●

●

●● ●●●
●

●

●

●
●

●

●

●● ●
●

●●

●

●

●

●

●●●
●

● ●●●

●

●

●

●● ● ● ●●

●

●

●

● ●●
●

●

●

●●
●

●

●

● ●●●●
●● ●

●

●

●

●●
●● ●

●●
●

●● ●●● ● ●
●

●

●●● ● ●
●

●

●● ● ●● ●●

●

●

●

● ●
●

●● ● ●● ●● ● ●●●● ● ●● ●●
●

● ●● ●

●

●
●

●

●

●

●●● ● ●●●

●

●

● ●●
● ●●● ●

●

●
●●

● ●●● ●

●

●

●

●●●

●

●

●

●● ● ●●●●
●

●

● ●●
●

● ●● ●

●

●● ●● ●
●

●●

●

● ● ●
●

●●
●

●● ●
●

●

●●●
●

●●

●

●
● ●

●
●●

●
●

●

●● ●

●

●

●

●● ● ●● ●●● ●
●

●●

●

●

●

●●●
●

●●● ●●

●

●

●
●

●

●● ●●

●

●
●● ●

●
●●

●

●
● ● ●

●

●

●

●

●
●

●

● ●●●

● ●

●● ●●●● ●

●

●
● ●● ●● ● ●●●● ●

●

● ●● ●
●

●●● ●●●●

●

●● ● ●
●

● ● ● ●●● ●● ● ●● ●

●

●●

●

●● ●●

●

●
●

●

●●

●

●

●● ●●

●

● ●

●

●

●

●●

●

● ●●●

●

●

●

● ●●

●

●

●

●
●●

● ●● ●
●

●
●

● ●

●

●●

●

●

●

●

●

●●
●

●● ●●

●

●

●

●

●
●

●
● ● ●●

●

●●●
●

●

●● ●

●

●
●● ● ●

●

● ●●●

●

●●

●

●

● ●●●●●●●

●

●●
●

● ●

●
● ● ●●

●

● ●● ●●

●

● ●●●●

●

●

●

●
●● ●

●

●
●●

●

●●

●

●
●●

● ●● ●●● ●●●● ●●●

●

●●

●

●

●

●● ●

●

●

●

●

●●●
●

●●

●

● ●

●

● ●● ●

●

● ●

●

● ●● ● ●● ●●● ●
●

●

●●

●

●●● ●●●● ●●●● ● ● ●●

●

●● ●● ●●

●

●

●

●● ● ●●●

●● ●

●●

●

●●

●

●
●

●● ●●
●●

●
●

●

●

●

●

●● ●●

●

●

●

●●

●

●

●

● ●● ●●●

●

●
●

●

●

●
●

● ●● ●● ●

●

●

●●● ●● ● ●●

● ●

● ●●

●

● ●●●●●

●

●

●

●

●

● ● ● ●
●

●

●

●●● ● ●●●● ●
●

● ●

●

●

●

●
● ●

●

● ●● ●●

●

●● ●

●

● ● ●

●

●

●
●

●● ●

●

●

●

●

●

●
● ●●●

●● ● ●●

●●

●

●

●● ●

●

●
● ●

●

●

●

●
● ●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ● ● ●●● ● ●
●

●● ●●

●

●●●

●

●●

●

●● ●●● ●

●

●
●

●

●

●●● ● ● ●

●

● ●

●

●

● ●● ●

●

●

●

●●

●

●

● ●● ●
●

●

●

●

●

● ●

●

●●●

●

●●
●● ●

●

● ●●● ●

●

●● ● ●● ●

●

● ●●
●

●●●
●

●
●

●

●● ● ● ●

●

●

●

● ●●● ● ●●

●

●●
●

●
●

●
●

●
●

●● ● ●●● ● ●● ●
●

●

●
●

●

●● ● ●

●

●

●

●● ● ●● ●

●

●

●

●●

●

●

●

● ●●●●● ●
●

● ●●

●

●

●

●
●

●

●

●●

●

●

●

●●
●

●

●

●

● ●
●●

●

● ● ● ●
●

●

●●● ●
●

●
● ●

●

●

●
● ● ●●

●
●

● ●

●
●

●

●

● ● ●● ● ●● ●● ● ● ●● ●

●

● ●
● ●●●

●
● ● ●● ● ●● ●●

● ●

●

●●● ●●● ● ●
●

●
●

●

●
●

●

●

●● ●● ●

●

●●
●

●● ●● ●● ●● ●

●

●●
●

● ●

●

● ●

●

●●● ●
●

●

●

● ●●●

●

●

● ●●

●

●

●
● ● ●●

●

●

●

● ●

●

● ● ●●●

●

● ●

●

●

●

●
●● ●● ● ●●●●● ●● ●● ●●●

●

● ● ●●
●

●

●●●
●● ●●

●
● ●●

●

●

●●● ●●

●

●

●

●●● ●● ●

●

● ●●●
● ●

● ●●

●

●

●●

●

● ●●● ●

●
●

● ●● ●●●

●

●● ●●
●

● ●●
●

●

● ●●

●

● ●

●

●●● ●●● ● ●●

●

●● ●●●

●

●●
●

●● ● ●
●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●●●

●

● ●●

●
●

●● ● ●

●

●

● ●●● ● ●

●

●●●● ●

●

● ●

●● ●

●

●
● ●

●

●●

●

● ●●
●

●

●

● ● ●
●●

● ●● ●

●

●● ●●

●

● ●● ●
●

●● ● ●●● ● ●● ●● ●

●

●● ●●

●

● ●●

●

●● ●

●

●

●

●

●
●

●

●
● ●● ●● ●

●

● ● ●

●

● ●● ●●● ●● ●

●

●●
●

●

●●

●

● ●

● ●

●

●

●●●
●

●

● ●

●
●

●

●
● ●● ● ●●

●

●

● ●

●

●●

●

● ●● ●●● ●●

●

● ●

●

●
●

●●● ●●

●

● ● ●●
●

●

●● ●● ●● ●● ● ● ●● ●

●
●

●

●
●

●

●● ●
●

●

●

●

●
●

● ●
●

●●● ●● ●●● ●

●

●●● ●● ●
● ●

●

● ●

●

● ● ● ●●●
●

●● ●

●

● ● ●● ●
●

●● ●● ● ●● ● ●● ●
●
●

●●
●

● ●
●

● ●●●

●

●

● ● ● ●● ●

●

●● ●
●

●●●

●

●

●

●
●

●

●

● ●●●
●

●●

●

● ●
●

●
●

●

●

●

● ●● ●●● ●

●

● ●●●
● ●

●● ●● ●●● ● ●

●

● ●● ● ●● ●

●
●

●● ●●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●● ●
●

● ●● ● ● ●● ● ● ●

●

●

●

●●

●

●

●

●

●

●●
●

●
●

●● ●●

●

●● ●●

●

●● ●

●
●●

●

● ●

●

●

●

●
●

● ●●
●●

●

●

● ● ●●●●●● ●●
●

●

●●

●

●●

●

●

●

● ●

●

●
●●

●

●● ● ●

●

●●● ●
●●

●

● ●
●

●

●

●

●

●

●

●

● ●

●

● ●●●

●

●●

●

●
●●

●

●

● ●

●●

●

● ●● ●● ● ●
●

●

●

●● ● ●

●

● ●

●

●
●

●

● ●● ●●

●

●● ●● ● ● ● ●

●

●

●

●

●●
●

●
● ●●

●

●

● ●●
●

●

●●●

●

●

●
●

●

● ● ●

●

● ●●

●

●
●

●

●

●

●
●●

●

●

●● ●●●
●

●● ●
●

● ●●
●

●

●

●●● ●
●

●
●

●● ●●
●● ●●● ●●

● ●●

●

●

●

● ●
●

●
●

●● ●

●

●

●

●

●
●

●

●●● ● ●

●

●● ●●

●

●

●●
●

● ●●

●

●

●● ●●●

●

●

● ● ● ●
● ● ●● ●

●
●● ●

●

●

●

●●

●

●

●

●

●

●● ●●

●

●●●● ●

●

●● ●●● ●● ●●● ●

●

● ●●● ● ● ●

●

● ●

●

●

●
●

● ●●●●
●

●

●

● ● ●● ●● ●●●● ●● ●●●● ●● ● ●●● ● ● ● ●
●

●

●

●● ●

●

●

●
●

●

●

●

●

● ● ●
● ●

● ●

● ●
●● ● ● ●● ● ●●

●

●

●

●●●

●

● ●
●

●

●
●

● ●● ●●● ●

●

● ●

●

●● ●● ● ●● ●● ●

●

● ●

●●

● ●● ● ●●

●

●

● ●●

●

●● ● ● ●● ● ●● ● ●
●●

● ●● ●● ● ●●

●

●

●

●●● ●● ●
●

●● ● ●●

●

●●● ●● ●● ●●●

● ●

●●

●

●
●

●● ●●● ●
●

●

●
●

●
●

●● ●●

●

●● ●

●●
●

●

● ●●
●●

●

●
●

● ●

●

● ●

●

●

●

● ●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●● ● ●● ● ●

●

●
●● ● ●● ●●●

●

● ●●

●

● ● ●

●

● ● ● ●

●

●●● ● ●
●

●
●

●

●
●

● ●● ● ●●

●

● ●● ●●

●

●

●

●

●

● ●●● ● ●

●

● ●

●

●●●

●

●● ●● ●

●

●● ●
●

● ●● ● ●
●

●● ●●●

●

●

●

●

●

●

●

●

●

● ●● ●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●●● ●●●
●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●

●

●●

●

●●● ●

●

●

●

●●● ●
●

●
●●

●

●●

●

●● ●

●

●● ●

●

●●● ● ●●

●

●
● ●

●●●

●

● ●

●

●

●

● ●

●

● ●● ●● ●

●

●
●●

●

●

● ● ●

● ●

● ●●
●

●●● ●

●

●

● ●
●●

●

●

●

●
●●

● ●
●●

●●

●

●

●

●
●

●

●

● ●
●●

●
●

●

●

● ●

●

● ●●

●

●● ●● ●●● ●● ●●

●

● ●● ●●
●

●●● ● ●●● ●●

●
●

●

●
●

●
●●

●

●

●

● ●● ●●●●

●

● ●●●●● ●
●

●

●

●

●

●

●

●

●● ●● ● ●

●

●●

●

●

● ● ●

●

●

●●

●

●●

●

●
●●●●

●

●●

●

● ●● ●● ● ● ●●

●

●

●● ●

●

● ●●

●

●

●

●

●

● ●

●
●

●

● ●

●

●

●

●●

●

●
●

●

●

●

● ●● ●

●

● ●●●● ●●● ●●

●

●●

● ●

●

●

●

● ●● ● ●●

●

● ●●

●

●
●

●
● ●● ●●●● ● ●

●

●● ●

●

●

●

●
●

● ●

●
●

●●

●

●●
●

●

● ●
●

●

●
●

●

●● ●● ●●

●

● ●● ●● ●
●●

●●
● ●

●

●●
●

●

●

●

●
● ●

●

● ●●
●

●

● ●
●

●

● ●
●

●● ●

●

● ● ●● ● ●● ●● ●●●
● ● ● ● ●

●

●

●●● ●● ● ●

●

●

●

●

●

●
●●●● ● ●

●

●

●● ●
● ●● ● ●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

● ● ●● ●● ●● ●
●

●

●●
●

●● ●
●

●

●●●

●

● ●●● ●● ●

●

●

●●

●

● ●●

●

●

●

●

●
●

●

●
●

● ● ●● ●

●

● ●
●

● ●

●

●
● ● ●● ●

●

●
●

●

●

●● ●

●

● ●● ●●● ●

●

●●

●●

●

●

●
●

●

●

● ●

●

●● ●●
●

●

●

●

●

● ●● ●● ● ●●●

●

● ●

●

●

● ●

●
●● ●●

● ●

●

●

●

●

●●● ● ●●●●
●●

●

●

●
●

● ●● ●● ●

●

●

● ●

● ●●

●

●●

●●

●● ● ●●

●

●

●

●●

●

●

● ●●●●

●

●

●

●

●●

●

●
●

●● ●●● ●●
●

●
●

● ●●●●

●

●● ●
● ●● ● ●●

●

●

●● ●● ●● ●

●

● ●● ●

●

●

●

● ●
●● ●● ●● ●

●

● ●
●

●
● ●

●

● ●● ●●●

●

● ●
●

●●●
●

●

●

●

●● ●●● ●●● ●●● ●●●● ● ●

●

●

●

● ●●

●

●

●● ●●● ● ●

●

● ●

●

● ●●
●●

●

● ●● ●● ●

●

●

●

● ●● ●

●
● ●

●
●

●●

●

●

●●● ●
● ● ● ●

●

●●

●
●

●

●

●

●

●

●

●●● ●● ●●

●

●●

●

●

●

●

●

●●

●

●
●

● ● ●●● ●●

●

●●

●

● ●●● ●●● ●● ●

●

●●● ●● ●

●

●
●

●

●

●

●
● ●

●● ● ●●
●

● ●●● ● ●

● ●

●●

●

●● ●

●

●●

●
●

●●

●

● ●● ●● ●● ● ●● ●●● ●●

●●

●● ●

●

●● ● ●● ● ●

●

● ●● ●
●

●
●

●

● ●●● ● ●●

●
●

● ●

●

● ● ● ●● ●● ●● ●●● ●
●

●●
●

●

●●● ●
●

●

●● ●

●

●

●

●● ● ●●●● ●●

●

●●●●

●

●

●

●● ●

●

●● ●

●

● ●●
●

●
●

●

●● ●

● ●

●●

●

●● ●●● ●●●
● ●●

●

●●● ● ● ●● ●
●

●

● ●● ●
●

●

●
●

●

●

●
●●

●

●

●

●

●

● ●
●

●

●

● ●
● ●●

● ●

●
●

●●

●

●

●●●

●

●●●
●

●

●

●

●

● ● ●●

●

● ●● ● ●
●●

●● ● ●●●

●

● ● ●

●

●● ●
● ●

●
●

● ● ●●● ●● ●

●

●● ●
●

● ●● ● ●●● ● ●● ●●●

●

●●
●

●
● ●

● ●● ●●●

●

●●

●

●● ●● ●●● ●

●

● ● ● ●● ●●
●

● ●● ● ●

●

●

●

●●●●● ●● ●●
●

●

●

● ●

●

●

● ● ●●●
●

●
●● ●

●

●

●● ●●

●

● ●

●

● ●

●

● ● ●●● ● ●

●

● ●

●

●
●●● ●

●

●●●

●

●
●

●

● ● ●

●

●

●

●

●

● ●●●●
●

●
●

●●

●

●

●● ●
●

●●

●

●
●

●●● ●

●●

●●● ●● ● ●

●
●

●

●

●

● ●● ●

●

● ●
●

● ●
●

● ●

●

●
●

●
●

●

●
●

●● ●●

●

● ● ●

●

●

●

●● ●●
● ●● ● ●● ●

●
●●●● ● ●●

●
●

●

●
●

●●

●

●

●

●
●

●●● ●

●

● ●
●

●●●

●

●
●

●

●

● ●● ● ●● ●●● ●● ●

●

●

●

●●
● ●● ● ●●● ● ●●●

●

●● ●

●

● ●

●

●● ● ●●●

●
●

● ●
● ●● ●●

●

●

●
●

●

●
● ●● ●

●

●

●

●●
●● ●●

●

●

●

● ●●

●

● ●● ● ●●● ●● ●●●● ●

●

●● ● ● ●●

●

●

●

●

●
●

●
●

● ●
●●

●● ●●

●

● ●●● ●●
●●

●

●● ● ● ●● ●● ●● ●●● ●● ●●●

●

● ●● ● ● ●● ● ●

●

●●●● ●● ● ●●● ●

●

●

● ●
● ● ●

●

●●

●

●●● ●● ●

●

●

●

● ●

●

● ●● ●

●

●●

●
●●● ●● ●

●

● ●
●

●
● ● ●●●●
●

●●●●● ●
● ●●

●

● ●●

●

●

●

● ● ●●

●
●

● ●● ●●
●

● ●● ● ● ●●● ●●
●

●● ●

●

●

●

●

●

●

●●

●

● ●●

●

● ● ●

●

●● ●● ●● ●

●

●

● ●

● ●

●

●● ●

●

● ●
●

● ●●●
●

●●

●

● ●● ●
●

● ●● ●●●

●

●
●

●● ● ●● ●

●

●●
●●●

●

●

●

●●● ●

●
●

●
●

●

●
● ● ●

●

●
●

● ● ●●●

●

● ●●● ● ●

●

● ●●

●

●
●

●

●

●● ● ●● ●

●

●● ●

●

●

● ●● ●●

●

●

●●●

●

●● ●●

●

●

●

● ●●● ●●

●

●●●

●

● ●●

●

●

● ● ●

●

● ●

●

●● ●
●

●
● ●●

●

●
● ●

●

●● ●●
●

● ●
●

●

●● ●
●

●

●

●

● ● ●
●● ●● ●

●

●

●●

●
●

●
●● ●

●

●

●

● ● ●● ●● ● ●

●
●

●

●

●

● ●● ●

●

●

● ●●
●● ●●

●
● ● ● ● ●

●
● ●

●

●● ●

●

● ●● ●

●

●

● ●● ● ●● ●● ● ● ● ●● ●●● ●● ●

●

● ● ●● ●● ●●●

●

●

●

●

● ●

●

●●●

● ●●

●
● ●●

●

●
● ● ●●

●

● ● ●●● ● ●

●

●●●●

●

●

●

●●
●

●●

●

● ●
●

●● ● ●

●

●
●

●

●

●

●

●
● ●●●

●

● ●● ●●

●
● ●

●● ●● ● ●● ● ●

●

● ●

●

● ●
●● ● ●●

●

●● ●● ● ●●●

●

●

● ●
●

●

●
●●● ●●● ●●●

●

●●

●

●●

●

●

●

●● ●

●

●

●

●

●● ●●

●

●● ●

●

●

● ● ●●
●● ● ● ●● ● ●● ●

●

●

●●●
●

● ●●

●

●

●

●● ●●●
●

●
●

●

● ●● ●●

●

●
●

●

●
●

● ● ●●
● ●●● ●●

●

●

●

●

●

● ●●

●

●
● ●

●

● ●
● ●●

●

●

●

●
●

●●

●

●● ● ●●●●

●

●
●

●● ●●●
●

●● ●

●

●

●

● ●

●
●

●● ●

●

●● ●● ●● ●●● ●

●

●

●

●● ●● ● ●●●●● ●●●

●

● ●●
●

●

● ●●
●

● ●●● ●

●

●
●

●●

●

●

●

●

● ●●●
●

●

●

●● ●●
●

● ● ● ●● ● ● ●● ●●●● ●●

●

●● ●●● ●

●

●

●

●

●●

●

●

●

●● ● ●●●● ●● ● ●●
●

● ●

●
●

● ●● ●●

●

●

●

●

● ●

●

●●
● ●

●●
● ●●

●
● ●● ● ●

●
●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

● ● ● ●
●

●● ●●
●

●

● ●●● ● ●

●

●●● ●● ● ●● ●● ● ● ●● ●
●

● ● ●
●

● ● ●
●

●

●
●

●● ●
●

●●●● ● ●●● ●●● ● ●● ● ●● ●

●

●●●

●

●
●

●

●
●

● ●
●

●
●● ● ●

●

●●
●

●
●

● ●

●

●

●
● ●

●

●

●
● ● ●

●
●

●

●●

●

● ●

●

●

●

●

●● ●● ●● ●● ●● ● ●

●

●

●

● ●
●

●● ●● ●

●

●
●

●

● ●●● ● ●

●

●
●● ●

●
● ●●● ●●

●

●
●

●●● ● ●●

●
●

●

●

●

●

●

●

● ●
●

● ● ●● ●● ● ●

●

●
●● ●●●●● ●

●

● ●● ●●
● ● ●●

●

●

● ●

●

● ●●●●
●

●

●

●●●

●
●

● ● ● ●●

●

●

●

●

●●● ●

●

●
●

●

●●
●

● ●

●

● ● ●

●

●

●

●● ●

●

● ●● ●●

●
●

● ●
●

●● ●● ● ●

●

● ● ●● ●

●

●
●

●

●

●
●

●
●

●● ●●
● ●

●

●

●

●
●

● ●● ●●

●

●

● ●●● ●● ●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

● ●●●
●● ●

●
●

●
●

● ● ●

●
● ●●●● ●● ●●● ● ●● ●●

●

●

●

●●

●

●

●

●● ●● ●●
●

● ●

●

●

●

● ●
● ●● ●●●●

●
●●

●

● ●●

●

●●●
●

● ●

●

●● ●●
●

●

●

●●

●

●

●●● ●
●

●
● ● ●● ● ●●●● ● ● ●● ●●

●

● ●●
●

● ● ●● ● ●

●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●●

●

●●●
●

●

●

●

● ●

●
● ●

●

●

●●

●

●

● ●

●

●

●

● ●● ●● ●●

●

●● ●● ●● ● ●●
●●● ● ● ● ●

●

●●●

●

●● ● ●
●● ●●

●

●

●

●●

●

●

●

● ●●● ●

●

●
●

●
●●

●

●● ●●●
●

● ●●

●

●

●

● ●
●

● ●● ●● ●

●

●●

●

●● ●●●● ●●
●

●●●

●

● ●● ●

●

●

●
● ●

●
●

●●

●

●

● ●

●

● ● ●
●● ●●●●

●

●

●●

●

●● ●
●

● ●● ●● ●●●

●

●

●

● ●● ●
●

●

●

●● ● ● ●● ● ●

●

●● ●●●●●

●

●

●

●
●

●
●

●
●●● ●● ●● ●

●
●

●

●

●

●

●
● ● ●● ●● ● ●● ●

●

● ● ●● ●

●

●●

●

●

●

●
●● ●● ●●

●

● ●●●

●

● ● ●

●

● ●

●
●● ●

●

●

●

●

●

●

● ●● ●● ● ●●

●

●●
● ●

●
● ● ●●

●
●● ●

●

●●

●

● ●●●● ●

●

●●● ●

●

● ●

●

●

●● ●

●

● ●●● ●● ●● ●

●

● ●●

●

●● ●

●

●
●●

●

●

●

●

●

●

●

●● ●●● ●●●
● ●●

●

● ●

●

●

●●

●

●●
● ●● ●●●● ● ●● ●● ●● ●

●

●
●

●● ●

●

●● ●

●

● ●●

● ●

● ●●●● ●●

●

●
●

●●●
● ●●●

●

●

●●

●

●
● ●●●

●
●● ●● ● ●●● ●

●●

●

● ●●

●

●

●

●

●

●

●

● ● ●●

●

● ●● ● ●

●
●

●●

●

●● ●● ●

●
●

●●

●

● ●●● ● ●● ●●

●
●

●

●

●

●

● ●●●

●

●● ●

●

●
●● ●● ●

●

●●● ● ● ●● ●●

●

●● ●

●

●● ●●● ●●● ●●●● ●

●

● ●●● ●●●

●

●

●

●● ●

●

●
●

●● ●

●

●●

● ●
●

●●● ●●

● ●

●

●

●● ●●
●● ●

●

● ●
● ● ●● ●●

●

●●●●● ●

●

● ●

●

●

●●

●● ● ●
●

●

● ● ●

●

● ● ●● ● ●● ● ●

●
●

●

●●● ●

●●
●

●

●
●

●

●

●

●

●

●

●

● ● ●●
●● ●

●

●●

●

●

●●●●
●

●

●

●

●

●

●

●●
●

●

●

●

●●● ●
●

●● ●● ●● ●

●

●
●●

●●
●●

●
●

●
●●

●

●
●

●●● ●●● ●● ● ●● ●
●

●

●

●●● ●●● ●

●

●
● ●

●

●● ● ●●●●
●

●

●● ●

●

● ●●● ●●

●

● ●

●

●

●

●● ●
●

●●

●

●

●

●
●● ● ●● ● ●● ●● ●

●
●● ●●

●●

●

●●●

●

●● ●

●
●

●

●● ●

●
●

●

●

●● ●●● ●

●
●

●
●

● ●

●

● ●●● ● ● ●● ●● ● ●● ●
●

●● ● ●

●

● ●

●
●

● ●●
●

● ● ●
●

● ● ●

●

●●

●

●●●● ●
●

●

● ●

●

●

●

●●●

●

●●

●

●

●

●

●●● ●● ●●● ●●●

●

●

●● ●

●

● ● ●●●

●

● ●
●

●

●
●

●● ●

●

●

●

●

●

●

● ●●●● ● ●

●

●
●

● ●
●

●

●

● ●● ●

● ●

● ●● ●●
●

●

●

●

● ●● ●

●

●

●
●

●
●

●

●

●

●

●●●

●

●
●

●● ● ●●●

●

● ● ●●
●

● ●

●

●

●

●

●

●

●
●●

●

●●

●

● ●

●

●● ●●●

●

●

●●● ●
●

●

●

●● ●

●

● ● ●●● ●●● ●

●

●
●

●● ●● ●
●

●● ●● ●●●
●● ● ●

●
●● ●● ● ●● ● ●● ●●

●
●

● ●● ●

●

● ● ●●

●

●

● ●●
●

● ●
●

●

●● ● ●
●

●

●

●

●

●

●

●●●● ●
●
● ●●● ●●

●

● ●● ●● ● ●●
●

● ●● ●● ●●●●

●

●●● ●●● ● ●● ●
●

● ●●●● ● ●
●●

●

●

●●

●

●
● ●

●

●

●●

●
● ●

● ●
●

●

●●
●

●

●●
●

●●● ●
●

●

●

●

●
●●●●

●
●

● ●
●

●

●

●

●

●
●

●

●

●

●
●

●●●
●

●

●
● ●●●● ● ●●●

●

●

●
●●

●

●

● ●
●
● ● ●●●

●
●●

●
●●● ●

●
●● ● ●

●

●●● ●● ●●

●

●

●

●●●

●

●●●

●

● ●●

●

● ● ● ●● ●
● ●

●

●

●
●

●●

●

●● ● ●

●

● ●
●

●●● ●● ● ● ● ●●● ●
●

●

● ●●●

●

●

●

●

●●

●

●●
●

●
● ●●

●
●

●

●

●

●

● ●
●

●
●●●

●

● ●● ●● ●●

●

● ●●● ●●

●

● ●
● ●

● ●
●

●● ●

●
●

●
●●

●
●

● ●

●

●● ●
●

●

●

●

● ●●

●

●

●

● ●● ●●●

●

● ● ●●● ●● ●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●
●●●

●

●● ● ●●

●

●
●

●

●●
●

●

● ●●● ●

●

● ●●● ● ●●

●

●● ● ● ●●● ● ●●
●

●● ●
●

● ● ●● ● ●●

●

● ●
●

●● ●●●

●

●●

●

● ●
●

●

● ●● ●

●

●

●

●

●

● ●●●●

●●
●

●● ●● ● ●

●

●

●● ● ● ●●

●

●
● ●

●

● ●●

●

●●● ● ●

●

●

●

●

●

● ●
● ●

● ●

●

● ●

●

●

●

●● ●● ●●● ●● ●
●

●

●●●

●

● ●● ● ● ●● ●●●
●● ●● ●●● ●

●

● ●● ●

●
● ●● ●● ●

●
● ●●● ●

●

●

●

●● ●●●

●

●

●

● ●●● ●● ●

●

●

●
●

●
●

●● ●
●

●

●

●●

●

●●● ●●●●
● ●

●
●

●

● ● ●

●

● ●●
● ●● ●● ●●●

●

●

●● ●● ●
●

●

●

● ● ● ●●● ● ●●

●

●●● ● ●● ●●● ● ●●● ●●
● ●

●● ●● ●
●

●

●●
●

●

●

●

●

●

●
●●●

●

● ●
●

●

●

●

●

● ●● ●

●

●● ●

●

●
●

●

●
●

●● ●● ● ●●
●

● ●●

●

● ● ●●

●

●●

●

● ●● ●● ●●
●

●●

●

●

●

●

●●

●
●

●

● ●● ●
●

●

●

●

●●●

●

●
● ●● ●

●

●● ●●

●

● ●

●

● ●
●

●● ●

●

● ●● ● ●● ● ●

●

●●
●●

●

●

●

● ● ●● ● ●●

●

●

●

● ●

●

● ●

●

●

●

●

●

●● ● ●● ● ●●●

●

●●● ●● ● ●

●

● ●● ●

●

●●● ●
●

●

●
●

●

●

● ●

●

●
●●

● ●
●● ● ●

●
● ●

●

●

●

●

●●
●

●

●

●● ●●

●
●

●

●● ●
●● ● ● ●

●
●● ●

●

●
●

● ●

●●

●● ●●

●

●

●● ●● ●● ●●

●

●

●

●●
●

●

●
●

●
● ●●●

●

●

●

●
●

●●
●

●●

●

● ●

●

●●● ● ●●● ●●●●
●

●
●

●

● ●● ●● ● ●● ●

●
●

● ● ●● ●

●

● ●

●
●

●

● ●●

●

● ●
●

●

●● ●

●

●

●

●●
●

●●● ●

●

●

●
● ● ●●

●
●●

●

●
● ●

●●●

● ●

● ●● ●● ● ●●

●

● ●

●

● ●

●

●

●

●

●

●●● ●●● ●●

●

●
● ●

●●

●

●
●

●●

●

●● ●● ● ●
●

●
●

● ●

●

●●

●

●
●●● ● ● ●

●
● ●●

●
●● ●● ●

●

●●● ●

●

●● ● ● ●
●

●●

●

●
● ●●●

●
●●●

●

●●● ●●

●

●

●

● ● ● ●●●

●

●●●

●

●●●
●

●

●

●

● ●●

●

●● ●
●

●
●

●

●●● ●●●●
●

●●

●●● ● ●●

●

●
●

● ●

●

● ●

● ●●●

●

●

●

●

●

●

●● ●●●●

●

● ●●●● ●● ●● ●●● ● ●
●●

●

● ● ●●

●

●

● ●●●

●

●●

●

●●
●●●

●● ●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●●● ● ●

●
●

●

●● ● ● ●● ●● ●●

●

● ●
●

● ● ●●
●

●● ●● ●●● ●● ● ●

●

●

●
●

●

●

● ● ● ●

●

●● ● ●● ●●

●
●

●● ● ●

●

●

●●●
●

●
●

● ●

●

● ●

●

●●

●
●

●●

●
●

●

● ●●● ● ●●● ●

●

●

●

●

●

●
●● ●●●

●

● ● ●
●

●● ●● ●●●● ●●● ● ●●
●●

●

● ●

●

●● ● ●

●

●

●

●●
●

●

●
● ●● ● ●●

●

●● ●● ● ●

●

●

●

●● ●●●

●

●

●● ●● ●●●
●

●

●
●

●●● ●●

●

●

● ●●

●

● ●

●

●
●

●●
● ● ●●●

●

● ●

●

●
● ● ●

●

●

●

●● ●
●

●● ●

●

●

●● ● ●● ●● ●● ●●

●

●●● ●
●

●●● ●

●

●
●

● ●

●
● ●

●
● ●●

●

●

●

●

●

●

●

● ●● ●● ● ●
●

●●● ●●

●

●

●

●● ●●● ●●
●

● ●
●

●

●
●

●
●●

●

●

●

●●●●

●

● ●● ●● ●
●

● ● ●● ●● ●●

●

●

●● ●● ● ●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●●
●●

●●●

●

●● ●
●

● ● ● ●●●
●

●

● ●

●
●

●● ●
● ●

●
●

● ●●

●

●●● ●● ●

●

● ●● ● ●● ●●

●

● ● ●

●

● ●●● ●●

●

●
●●●● ●●

●● ●

●
● ● ●

●

● ●

●

●● ●●● ●● ●
● ●● ●

●

●

●●

●

●

●

●

● ●

●

● ●● ●● ●

●

●●●●

●

●

●

● ● ● ●

●

● ●

●

●
● ● ●● ●● ●●● ● ●

●

●

●

● ●
● ●

●

●
● ●●● ●●

●

●● ● ●● ● ●●
●

●

●

● ● ●

●

● ●
●

●●
●

● ● ●● ●●

●

●● ●● ● ● ●

●

●

● ●●●● ●●●

●

●

●

● ●●

●
●

●

●

●● ●●●

●

●●

●●

●

● ●

●

●

● ●
●

●

●● ● ●

●●

●

●

●

●

●

●

●

● ●● ●

●

●
●

●

●

●
●●

●

●

●

●

● ●● ●

●
●

●

●
●

●● ●● ● ●

●

● ●

●

● ●

●

● ●●● ● ●● ●●

●
● ●

●● ●

●

●

●

● ●● ●● ●● ● ●●
●

●

●● ●●
● ● ●●●● ●

●

●

●

● ●

●

● ●●

●

●● ●●
●

●●

●

●

● ● ●● ●

●

●

●

●● ●● ●
●

●

● ●● ●● ●● ●●

●

● ●

●

● ●●● ●●● ● ●

●

●

●

●

● ●

●

●

●

●●●

●
●

●●

●

● ● ●

●

●

●

●●● ●
●

● ● ●●● ● ●

●

● ●● ●

●

●● ●● ●●
●

●
● ●

●

● ●●●

●

●

●●

●

●●

●

●
●

● ●

●

●

●● ● ●

●

●● ● ●●

●
●

●

●
● ●●● ●

●●●●
●

●●● ●

●

●
●

●

●

●

●

●

●

●●

●

● ● ●● ● ● ●● ● ●●● ●
●

●

●●● ●● ● ●●

●
●

● ●● ● ●●

●
●

●

●● ●

●

● ●●
●

●
●● ● ●● ●●● ●● ●● ●

● ●● ●

●

●
● ●

●
●● ● ●●● ●

●

●

●

●

●

●

●●●●

●

●

●●

●

●
●

●

●

●
●

●● ●
●

● ●
●

●

●

●●
●

●● ●●● ●● ●●●● ●

●

● ● ●

●

●

●

●●
●

●

●●● ● ●●
●

●●● ●● ●

●

●

●

●●
●

●

●

● ●●
●

● ●

●

●● ●
●●

●● ●●

●
●

●● ●

●

●●●
●

●

●● ●●● ●● ●
●

●

● ●

●

●

●

● ● ●
●

●

●

●●
●● ●●● ●● ●● ●●

●

●● ●

●
● ●●● ● ● ●●●

●
●

● ●●

●

● ● ●

●
●

●●● ●

●

●● ●
●

● ●

●
●

●

● ●●●●●●

●

●

●

●

●● ● ●●● ●

●

●
● ●

●● ●●

●
●

●

●

●

●

● ●
●

●

●

● ●

●
●

●

●

●

●

●● ●

●

● ● ● ●●●

●

●
●

●

●●
●

● ● ●●

●

●

●

●

●

● ●●

●

●●● ● ● ●
● ●

●

●●

●

●

● ●
● ● ●

●

●
●

●

●

● ●●● ●● ● ● ●●● ●

●

● ●●● ●

●

●

●

●
●

●

● ●

●

●● ●

●

●
●● ●●● ● ● ●●●●●

●

●●
●

●

●

●● ● ●● ●●
●

● ● ●

●

●

●

●●

●

●

●
● ●●

●

●●
●

●● ● ●● ●
●

●

●

●

● ●●

●
●

●

●
● ●● ●

●

●

●●

●

●

●● ●● ●
●

●

●

● ● ●● ● ●●● ●●●● ●●
●

●

●

●

●● ●● ●

●

●●
●

●

●

●

●

●

●

●

●● ●●

●

●
●● ●

●

●

●

●

●

●

●

●

● ●●● ●● ●● ●● ●

●

●● ● ●●

●

●●

●

● ●

●

● ● ●● ●
●

●●● ●●● ● ●●
●●

● ● ●
●●

●

●

●● ●● ●

●●

● ●●●

●

●

●

●● ●● ●●●
●

●

●● ●● ●●●
●● ●

●

●
●

● ● ●●●
●

●●● ●
●

●●

●

● ● ● ●
●

●

●

●

● ●

●

●

●● ●●

●

●●

●
●

●

● ● ●●●●

●

●● ●●●●

●

●

●

● ●

●

●

● ●● ●
● ●●●

●● ● ●●●● ●
●

●

●
●●

●

●

●● ● ●

●

●● ●●

●

●
● ● ●●●

●●

●

● ●

●
●

●●
●

●

●

● ●●● ● ●● ●● ●● ● ●●●●

●

●

●

● ●● ●

●

● ●●

●

●● ● ● ●

●

●●
●●

●
● ●

●

● ●● ●

●

●

●

●●

●

● ●● ●

● ●

● ●

●

● ● ●●●

●

●●

●

●●

●

●
●

●
● ●● ●●

●

●● ●

●

●

●

●

●

●
● ●

● ● ● ●●●●●

●

●

●●

●

● ●●● ● ●

●

●

● ● ● ●●●

●

●● ●●● ●● ●

●

●
●

●
●

●

●

● ●
●

●●
●

●●● ●
●

●
● ●

● ●●
●

●● ●●

●

●

●

● ●●

●

● ● ●
●

●

●

●
● ●

●

● ● ●● ●

●

●● ●●

●

●●

●

●● ●● ●

●

●●

●

●

●

●● ●● ●●●
●

●● ●

●

● ●
●

● ●●
● ●●

●
●

●

●

●

●

●

● ●● ●● ●●● ●

●

●●●

●

● ●● ●● ● ●

●

●
●●● ●●

●

●

●●● ●● ●● ●

● ●
● ●

●

● ●●●

●

● ●●
●

●●

●

●

●

● ●●●

●

●

●

●

●

●

●●
● ●● ●

●
●

● ● ●● ●

●

● ●

●

●
●

●● ●●● ● ●

●

●

● ● ● ● ●

●

●

●

●●● ●● ●

●

●
●

● ●● ● ●● ●●

●

● ●● ●

●

●

● ●● ●●

●

● ●
●

●

●

●

●
● ● ●●

●

● ● ●●●

●

●

●

●● ● ● ●
● ●

●

● ● ● ● ●●● ● ●

●

●
●

●
●●

●

●●● ● ●●

●

●
● ●

●●●● ●● ●●
●

●

●

● ●● ●●● ●●
●

●
●

●

●●

●

●

●
●●

●●●

●
●

●

● ●

●

●

●●
● ●

●

●

●

●● ●●● ●

●

● ●

●

●

●

●

●

●

●
●

● ●
●
●

●
● ●● ●● ●

●
● ●● ●● ●●● ●● ●● ●●

●

● ●

●

● ●●●● ●●

●

● ● ● ●● ●●● ●●●

●

●
●

● ●● ●●
●

● ●●●● ● ●●
●●

●

●

●
● ●● ●● ● ●

●

●● ●

●

●

●

●
●

● ●

●

●●

●

● ●● ●● ●

●

●●●
●

●
●●

●●

●

●

● ●
●

●

●●

●

●●●●● ●

●

●●

●

●

●

●

●

●

● ●● ●●

●

●
●● ●●

●

● ●● ●●●● ● ● ●●

●

● ●●●
●

● ●● ● ● ●● ●

●

●●
● ● ●

●

● ●●●

●

●

● ●●
●● ● ●● ●● ●

●
●

● ●●●

●

●

●

●

●
●●●●

●

●

●

● ●● ●● ●

●

●●● ● ●● ● ●

● ●

●

● ●

●

●

●

●● ● ● ●●

●
●

●

●

● ●

●

●

●
●

●●

●

● ●

●

● ●●

●

● ● ●● ●

●

●● ●● ● ●
●

●●

●

●●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●●
●

●●● ●● ●

●

●●

●

● ●●●● ●

● ●

●

●

●

● ●
●●

● ●

●

●

●

●

●

●

●

●● ●

●

● ●●●● ● ●●

●

● ●

●

●●● ●

●

●● ●●

●

●
●● ●● ● ●

●

●

●●
●

●● ● ●●

●

● ●

●

●●
●

●
●

●

●

●

● ● ●

●

●

●

● ●●
●

●
●

●

●●● ●● ●

●

●

●

● ● ●

●

●
●

●

●

●●
●●

●

●
●●

●

● ●

●

●
●

●
●

●
●

●● ●●

●

●● ●●

●

●●

●
●

● ●

●

●

●

●●

●

●

●● ●

●

●

●●

● ● ● ●●

●

●●● ●● ●●●

●
● ● ●● ●

●
● ●

●
●●

●

●● ●● ●●● ●●
●● ●●●

●

●●

●

● ● ●● ●

●

● ●

●

●

● ● ●● ● ●
● ● ●

●

●● ●

●

●

●

●

●● ●●

●

● ●●

●

●● ●
●

● ●● ●● ●
●

●
●

●

●

●

●

● ●● ●

●

●●
● ●

● ●●

●
●

●● ●●●

●

● ●● ●●●●●

●

●●

●

●● ●

●

●● ●●●●
●

● ●

●

● ●● ●

●

●

●

● ●● ● ● ●●●●●●

●

●

●

●

●

● ● ●

●

●● ●●

●

● ●

●

●

●● ●

●

●
● ● ●● ● ●●●

●

● ●

●

●

●

●

● ● ●●

●

●
●

●●

●

●●● ●● ●

●

●●
●

●● ●

●

●

●

●● ●●
●

● ●
●

●● ●● ●
●●● ●●

●

●

●

●
●●

●

●

●●● ●
●

● ● ● ●●

●

●●● ●● ●●●
●

● ● ●●●
●

● ●
● ●

●

●

●●
●

●

●
●

●

● ●● ●●
●

●● ●● ●
●

●

●
●

●

●

●●●

●

● ●●●●

●

●

●
●●

●

●

●

● ●

●

●

●

●●●● ●
●

●

●

●

●
●●●

●
●●● ●

●

● ●●

●

●
●● ● ● ●●● ●

●

●

●
●●

●

● ●●

●

● ●

●

●

● ●● ●●
● ● ●

●

●● ● ● ●● ● ●●
●

●

●

● ●●

●

● ●●

●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

● ● ●

●

●●

●

●●

●

●

●

●
●●

● ●
●

●

●

●

●● ● ●● ●

●

●

●

●
●●● ●

●

●● ●●

●

●

●
●

●

●
●● ● ● ●

●

●●● ● ●
●

●
●●

● ● ●● ●
●

●● ●● ●
●

●●●
● ● ●●● ●

●

●● ● ● ●● ●●● ● ●

●

● ● ● ●
●● ●

●
● ●● ●● ●

●
●●●

●● ●●

●

●

● ● ●● ● ●●●●● ●●
●

●

●●

● ● ●●
●

●●
● ●

● ●

●

●
● ●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

● ●● ●● ●●

●

● ●

●

● ●●
●

●

●

●
●

●

●

●●

●

●●●
●

● ● ●● ● ●

●
●

●● ●● ●● ●● ●● ●
●

●
●

●

●●

●●

●● ● ● ●● ● ●●

●

●● ●● ●
●

●

●

●
●

●

●

●●

●

● ●● ●● ● ●●● ●●

●

●

●

●●

●

●●

●

●● ●●

●

●

●●

●

●

●

●●

●

●● ●
●●

● ● ● ● ●

●

●

●

●

●● ●●

●

●●●

●

●●

●

●

●

● ●

●

● ●
●

●

● ●●
●●

●

●

●●
●

● ● ●●●●

●

●● ●

●

● ●●●●

●
●

●●●●
● ●

● ● ●● ●●
●

●● ● ●● ●

●
●●

●
●● ●

●

● ●●
●

●● ●● ● ●●

●

●● ● ●●● ●●

●

●●●●

●

● ●
● ●

●

●

●●● ●

●

●●

● ●●●

●

●

● ●

●

●
●

●●● ●
●

●

●

●●

● ●
●● ●

●

● ●
●

●

●●

●

● ● ●

●

●

● ● ●

●

●

●

● ●

●

●

●

●

●

●●
●
●

●

● ●
●

●

●

●

●

●

●●
●

●

●●●

●

●●

●

● ●

●

●

●
●

●● ●●● ● ●

●

●●

●

●●● ●

●

●
●

●●● ●●● ●
●

●● ●●

●

● ●
●

●

●

●
●● ●

●

●
●

● ● ●●

●

●

●

● ●● ●

●

●● ●●● ● ●●

●

● ● ●

●

● ● ●●

●

●

● ● ●●●
●●● ●

●

●
● ●

●

●●

●

●

● ●
●

●

● ●

●

●
●

●

●
●

● ●

●

●● ●●●
●

●●●● ●● ● ●● ●

●

●

●

●

●

●●● ● ●

●

●

●

●

●

●

●●

● ● ● ●

●

●

●

●

● ●

●

●

● ●●

●

●
●

●

●

●●

●

●

●

● ● ●● ●●●

●

●
●

●● ●● ●●
●

●● ● ●● ●● ●

●

● ●

●

●
●

●

●

● ●● ●● ●●●

●

● ●

●

●●●

●

●

●

●●● ● ●●●

●

●

●

●● ●
●

●●
● ● ●●

●

●

●

● ●● ● ●●

●

●

●

●

●

●

●

● ●● ●●● ●●● ●●
●

●

●

●● ●● ●
●

●

●● ●

●

●
●

●

●

●
●

● ●
●

● ●●
●

● ●●● ●●
● ● ● ●● ●●●●● ●● ●

●

●

● ●

●● ●●

●

●● ●● ●
●

●

● ●
● ●

●

●

●

● ●● ● ●●●● ●●
●

●

●

●● ●●

● ●

● ●

●

●

●

● ● ●● ●

●

●

●

●● ●● ●

●

●
●

●

●

●

● ●
● ●● ●●

●
●●

●

●●●●

●

● ●● ● ●● ● ●
●

●●● ●

●

●● ●● ●

●

● ●●● ●●●
●

●

●●

●

●

●

●

● ●●●
●

●
●●

●●● ●●

●

●●●●

● ●

●●● ● ●● ●●● ●●

●

●

●

●
● ● ●

●

●

●

●

●
● ●● ●

●

●

●

● ● ● ●●

●

●

●

●● ●●

●

●

●
●

●
●● ●

●

● ●● ● ●●
●

●

● ●● ●

●

●
● ● ●

●

● ● ●● ●●
●

●●● ●
●

●● ● ●● ●●● ● ●●● ●

●

●●

●

●
● ●● ● ●

●● ●●

●

●●●

●

●●
●

●

●●
● ●●

●
●● ●●

●

●
● ●

● ●●● ●● ●●
●

●

●

● ● ●● ●● ●● ●

●

● ●●●

●

●●●

●

●●

●

●●
● ● ●

●

● ●●

●

●

●

●● ●● ●●
●

●●

●

●●●

●

●
● ●● ●

●

● ● ●

●

● ●●

●

●●

●

● ●●●
●

●●

●

●●
●

● ●●●
●

●●
●

●● ●● ●●● ● ●● ●●

●

●

● ●●● ● ●● ●● ●●●

●

●

●

●

●

●
● ●

●

●

●

● ●● ●

● ●

●

●
●

●
●

●

● ●
●

●●● ●●

●

●
●●

●

●

● ●
●

●● ●● ●

●

● ●

●

●

●●

●

●

●

●

● ●●
● ● ●

●

●

●● ●●●●● ●

●

● ●● ●● ●● ●
●●

●

●

●

●

●● ●● ●● ● ●● ●● ●

●

●● ● ●●

●

●

●

● ●●●

●

● ●

●

● ● ●

●

● ●

●

●

●

●● ● ●
●

●

●
●

● ●● ● ●

●

● ● ●

●

●
●

● ●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●● ●●●

●

●● ●●● ●
●

●
● ●

●

●●

●

●●
●

●

●
●

●●

●

●

●

●●

●

● ● ●● ● ●● ●●

●

●

●

●

●

●●
●●● ● ●●

●

● ● ●●●
●

●●● ●●

●

●

●●● ●●

●
●

●● ●
●

● ●

●

●● ●

●

●● ●● ● ●
●

●

●

●

●

●
●●

●● ●● ● ●●● ● ●

●

● ●●● ●

●

●

●●

●

●●●● ● ●

●

●● ●

●

●●●

●
●

●

● ●●
● ●

●
●

●

●●
●● ● ●

●

●● ●● ●
●●● ● ●●●

● ●●
●●● ●

●

●

●● ●● ● ●
●

●●● ● ●●● ●
●

●
●

●

● ●●

●

●

●

● ●
●

● ●

●

●

●
●

●
●

●● ●● ●

●

● ●●●

●

●●

●

●

●

●

●
●

● ●●●

●

●

●

●
●●

● ●
●●

●●●
●

●

●●●

●

●
●●● ● ● ●●

●

●

●

●
●● ●

●
● ●

●
●

●●●

●

●

●

●●● ● ●●

●

●

●

●●
● ●

●

●

●●● ●

●

● ●

●

●
● ● ● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●● ●

●

●●● ●

●

●●
●

●
●● ● ●

●
●●

●
●

●

●●● ●
●

●
●

●
● ● ●● ●

●

●● ● ●

●

●
●

● ●
●

●● ●●
●

●

●

●● ● ●● ● ●●
● ●●●

●

●

● ● ●

●
●

●● ● ●● ●●● ●● ●

●

●
● ●●

●●● ● ●● ●● ● ●●

●

●●

●●

● ● ●

●

●

●

●●● ●● ●●

●

●
● ●

●

● ●●● ●● ●

●

● ●
●

●

●

●

● ●●● ●●● ●●●● ●●

●
●

●●●
● ●● ●●

●
●● ●

●
●

●

●
●●

●

●

● ●●●●

●

● ●●
●●●

●
● ●

● ●
●

●
● ● ● ●

●

● ●

●

● ●● ●

●●

●
●

●●●

●

●

●

●

●

●●

●

●
● ●

● ●

●

●

●

●● ● ●●● ● ●●● ●●

●

●
●

●● ●● ● ●● ● ●

●

●

●

●

●

● ●●● ● ●●

●

●● ●● ●●●

●

●
●

●●● ●●●● ●●●
●

●

●

● ● ●●

●

●

●
●●

●

●

● ●●● ●
● ● ●●●● ●●●● ● ●●● ● ●

●

●

● ● ●● ● ●

●

●

●

●●● ●● ●
●

●

●

●

●

●
● ●● ●

●

● ●●● ●● ●

●

●
●

●
●● ● ●

●
●● ●●● ●●● ●

●
●

●● ● ●●●

●

●●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●●●

●

● ● ● ● ●●

●

●
●

●

● ●●

●
●● ●● ●● ●●

●
● ●● ● ●

●
●●

●
●

●●
●

●

● ● ● ●●

●

● ●
●● ●

● ●●●

●●

● ●

●

●
●

●●●

●

● ●● ● ● ●●

●

● ●●● ●● ●● ●
●

●

●

● ●● ●●●●

●

●●
●

●

● ●

●

●●●

●

● ●●

●

●●
●●

●

● ●

●

●

●
●●

●● ●● ●●●● ● ●
●

●

●

●

● ●●

●

●

● ● ● ●●

●

●● ●

●

● ● ●
●

●

●

●
● ●● ●●

●

●

●

●

● ●

●

●●
●●

●

●

●

●
●

●

●● ●
●

●●
●

● ● ●

●

● ●
●

● ●

●
●

●

●
●

● ● ● ●●

●

●

●

● ●
●

● ●
●

●●

●

●

●

● ●

●

●

●

●

●
● ●● ● ●●●

●

●

●

●● ● ● ●● ●
●

●
●

●● ●● ●●● ●● ●
● ●● ●●

●

●
●● ● ●

●

● ●

●

●● ●●●●

●

●

●

●●

●

●●

●

● ●

● ●

●
● ●

●

●

●

●●

●

●

● ●

●

●●
●

● ●

●

●

●

●●

●

●

●●●●●● ● ●● ●

●
●●● ●

●

●● ● ●●
●

●
●

●● ●● ●

●

●●●● ●● ●●
●●

●

●●

●

●
●● ●

●

●

●● ●●

●

●● ●

●
●

●

●

●

●● ●● ●●● ●●

●

● ●● ●●

●

● ● ●● ●

●

●

●

●

● ● ●●
●

●● ●● ● ●●● ●●

●

● ●●

●

●●●
● ●

●

●
●● ●●

●●

●● ●● ● ●●

●

●

●

●

● ●

●

● ●●

●

●

●● ●
● ●

● ●● ●●

●
●

● ●● ● ●

●

●●

●

●● ●

●

● ● ●● ●●

●

●
● ●

● ●

●

●● ●
● ● ●

●
●●

●
●

● ●● ●●●● ●
● ●

●
●

●

●

●

●
●

● ● ●

●

●

●

●● ● ●

●
●

● ●●● ●

●

●●

●

●

● ●●

●

●

●

●

●

●● ●● ●

●

● ●● ●

●

● ●●● ●●

●

●● ● ●● ●●

●

●● ●
●

●

●

●●●●

●

● ●
● ●

●

● ●

●

● ●

●
●

●● ●●●
●

●

●● ●

●

●● ●

●

●

●

●● ●● ● ●● ●●

●

●● ●

●

●● ●●●

●

●

●

● ●●
●

●
●

●

●

●●

●

●

●

●●●●
●

●
●● ● ●●●

●

●●

●

●●● ● ●●

●

●

●

● ●●

●

●
● ● ● ●● ●

●

●

●
●●

●
●●

●

●●
●

●

●
●

●

●

●

●● ●●● ●●
●

● ●● ● ● ●● ●
●

●
●

●

●● ●

●

●

●●

●

●

●●
●

●● ● ●● ●●

●

● ●

●

●

●

● ●● ● ●

●

● ●● ● ●●
● ●●

●

●●●

●

●

●
●

●● ● ● ●●● ●

●

●

●

● ●
●

● ●

●

●

●

●

●

●
●

●
●

●● ● ●● ●●● ●● ●● ●● ●●
●

●

● ●

●

● ●●
●

●

●

●

●●

●

● ●● ● ●

●

●●

●

●

●

●

● ●● ●

●

●●

●

● ● ●● ●

●
●

●● ●● ●
●● ●

●
●

●

● ●● ●●

●

●●

●

● ●●●
●

●

●

●● ●

●

●

●● ● ●

●

●
●

●● ● ●●●●●
●● ● ●● ●●● ● ●●

●

●

●

●
●

●●
●

● ● ● ●●

●

●● ●
●● ●

●● ●●●
●● ●● ● ●●● ●

●
● ●

●

● ●●●● ●

●

● ●● ●●
●

●

●

●

●

●

●

●
●● ● ●

●

●

●

●

● ● ●●

●

●●

●

●

●

● ●●● ●●●
●

●

● ●
●●

●

● ●●●
●

●

●

●● ● ●● ●● ●
● ● ●● ●

●

●

●● ● ●

●

●

●●●

●

●

●

●

●

●●

●

● ●● ●● ●●●
●

●●

●

●● ●● ●●● ●● ●

●

●
●

●

●

●●
●

● ● ●● ●●● ●●

●

●

●

● ●●

●

●
● ● ●

●

●

●

●●

●

●●
●

●●

●

●●● ●● ● ●
●●

●

● ● ●● ●●● ●● ●●
●

●

●●

●

●

●●
●●

●

●●●

●

●

●

●●●
●

●

● ● ● ●● ●●
● ●●

●

●

●
●

● ● ●● ●● ● ● ●
●

●
●

●● ●●●

●
●

● ●

●

●●● ● ●●

●

● ●

●

●●
●●

● ●●
●

●
●●● ●●

●

● ● ●●

●

● ●
●

● ●●

●

●● ●

●

● ●

●

● ●
●●

● ●●

●
●

●● ●●

●

●
●

●
●

●●

●

●●

●●

● ●

●

●
●

●

●

●● ●

●

●● ● ●

●

●
●

● ●

●
●●

●● ●● ● ● ●

●

● ●● ●

●

●

●●●●● ●●●

●

● ●●● ●● ●●

●

●
●

●●
●● ● ●

●

● ●● ●●● ●●

●

●

● ● ● ●●

●

●●

● ●

●

●

●

● ●●

●

●

●

● ●
● ● ● ●●

●
● ●● ●● ●●●

●
●● ●●

●

●

● ●● ● ●●

●

●● ●●
●

●

●

● ●● ●●●● ● ● ●
●

●

●

●

●
● ●

●
● ●●

●
●

●
●●●

●

●

●

●

● ● ●● ● ●
●

●● ● ●

●●

●● ●● ● ● ●

●

●

●

●

●

●
●

●

●● ● ●● ● ●

●

● ●
●

●

●

●

●

●● ●

●

● ●●●

●

● ●
●●

●

●

●

● ● ●● ● ● ● ●●
● ●

●

●● ●● ● ●

●

●●

●

●●
●● ● ●● ●● ●

●

● ●

●

● ●● ● ●
●

● ●

●

●

●

●

●

● ● ●●
●

●

●

●●●

●

●●● ● ●●

●

●

●

●

● ●

●

●

●●
●●●● ●

●

●● ● ●
●

●

●
●

●
● ●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●● ●●

●

●●● ● ●

●

●

● ●

●
●

●

●●

●

●

●

● ●● ● ●●●

●

●● ●● ●
●

●

●

●

●

●

●

●

●

●

● ●● ●●●●

●

●● ● ● ● ●

●

●●● ●● ●●
● ● ●●●● ●● ●● ●●● ●●● ●●

● ● ●●●

●

●

● ●●
●

●
●

●

●

●
●

●●
●

●● ●

●

●

●

●

●● ●

●

● ●● ● ●● ●● ●

●

●●

●

● ●●
●

●

●

● ●

●

●● ●●●● ●●

●

●●●● ● ●●
●

●

●

●

●

● ●

●

●

●●

●

● ●●●● ●
●

●

●

●●

●

●
● ●● ●●

●

●

●

●

●

●
●

●
●

●
●

●● ●● ●

●

● ● ●●●●

●

●● ●● ●●
●

●● ●

●

● ●● ●

● ●

●●●●● ●●● ● ●

●

●

●

●

●

●
●●

●● ●● ●
●

●

●

●

●

●

●● ●●

●

●●● ●
●

●

●

●
●

● ● ●●

●

●●● ●●● ●●
●●

● ●● ●● ●●● ●

●

● ●● ●
●

●

●

●● ●● ● ●

●
●

● ●●

●
●

●●

●

● ●
●

● ●● ●

●

●●●●●
●●

● ●
●●● ●

●

● ● ● ●●
●●

●

●

●

●

● ●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ● ●●●●●

●

●

●● ●●●●
● ●

●

●

● ●●●

●

●

●

●

●

●

●

●● ●●● ● ● ●

●

●

● ● ●●
●●

●● ● ●
●

●

●

●

●

●●●
●

●

●

● ●
● ●●

●●
●● ●● ●● ●● ●●

●

●

●

●●
●

●● ● ●●

●

●● ●●●● ●
●

●

●●

● ●

●● ● ●●●

● ●
● ● ●

●
●

●
● ●● ●

●

●●● ●●

●

●

● ●

●

●●

●
●

●

●●●
●●

●

●

●

● ● ●●●● ● ● ●●

●

● ●

●

● ●●● ●
●

●

●

●

●

●
●

●
●

●● ●●●●● ●● ●●● ● ●
●

●

●

●● ●

●

●●

●

●● ● ●●

●

● ●
●

● ●●● ● ●●● ●● ●

●

● ●

●

● ●
●●●

●

●●●
●

●●● ● ●●
●

●●

●

●

● ●● ●

●
●

●●

●

● ● ●

●

● ●

●

● ●

●

● ●● ● ● ●●

●

●● ●
●● ●●

●●

●

●

●

●
●

●

● ●● ●●
●

● ●●● ●
● ●

●

●
●

● ●● ●● ●● ●

●

●

●

●●● ● ●

●

●● ● ●● ● ● ●●
●

● ● ●● ●
●●

●

●

● ●

●

●

●
●●

●●●
●

●

●

●

● ●●●

●

●●●
● ●

●
● ●

●
●

●

●

●

● ●● ●● ●●●
●

● ● ●●● ●● ●●

●

●● ●
●

●

●

● ●

●

●●●
●

●● ●●● ●● ●● ●

●●
●●● ●● ●● ● ●●●

●

●●
●

●●
● ●● ●● ●● ●

●

● ●● ●● ● ●

●

●●●
●

●
● ●

●
●

●

● ●

●

● ●● ●
●

●

●

●

●
●

●

●

●

●

●

● ● ●●

●

●●
●

●

●

● ●●● ●

●

●
●

●●

●

●●●●● ●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●
●

● ● ●●●●

●

●●●● ●

●

● ●

●

●

●

●

●● ●● ●
●

● ●

●

●●

●

●●

●

●

●●

●

●●
●

●

●●
●

●

●●

●●

● ●● ●● ●●

●

● ●●● ●● ● ●
●

●●
●

●

●
●

●● ●●● ●●●

●

●

● ● ●●●●●

●

● ●● ●● ●● ●● ●● ● ● ●
●

●● ●●
● ●● ● ●

●
●

●

●

●

●

●● ●●●

●

●●

●

● ●●●
●

●

●● ●●

●

● ●
●

●
●

● ● ●

●

● ●● ●

●

● ●●● ●●●●
●

●

●

● ●
●

●● ●●
●

●

●

●

●

● ●

●

●

●

● ●

●

●●

●

●
●● ●●●

●
●

●

●● ● ● ●

●

● ● ●●

●

●

●

●● ● ●●● ●●

●

●

●

●

●
●● ●

●

●
● ●● ●●

●
●

●● ●●● ● ●

●

●●● ●● ●● ●●●● ●

●

●

●
● ●

●

●●● ●

●

● ●
●

●●●
●● ●●●●

●●

●

●

●
●

●
●

●

●

●

● ●

●

●●
●
●

●

●

●

●

●

●

●● ●●●

●

●● ●

●

●
● ● ● ●● ●

●
●●

●

●

●

●●

●

●

●

● ●● ●

●

●
●●●

●

●●

●

●
●

●● ●

●
●●● ●●

●●

●
●

●●● ● ●●

●

●
●

●

●

●● ● ●● ●● ● ●

●

●●

●

●●●

●

●

● ● ●● ●●
●

● ● ● ●● ● ● ●

●

● ●● ● ●
● ●● ● ●

●

● ●●
●

●●

●

●

●

● ●●●
●● ●● ● ●●

●

●

●

●

● ●●●
●

●

●

●
●

●

● ●●

●

●

●

●

●

●

●

●

● ● ● ●

●

●

●

●

●

●

●●

●

●●●●
●●● ● ●

●

●

● ●●● ● ●

●

● ●

●

●●●
●

●

●

●

●●
●

●

●●● ● ●

●

●
●

●

●●●
●

●

●

●●

●

●

●

● ●●●●

●
●

●

● ●

●

● ●

●

● ●●

●
●

● ●

●

●
●●●●

●● ● ●● ●●●

●

●
●● ●

●

●
●

●
●

●●

●

●

●

●

● ●
●

●

●

●

● ●

●

●● ● ●●

●

●●●

●

●●
●

● ●●

●

● ●

●

● ● ●●●●● ●●●●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

● ●● ●● ●●● ●●●

●

●
●

●●● ● ●●

●

● ● ● ●
●

● ●● ●●
●●

●●●● ●●

●

●

● ●● ● ● ●●

●

●
●

●● ●● ●

●

● ●

●

●
●

●● ●● ●● ●

●

●

●
●

●
●● ●●● ● ●● ●

●

●● ●

●●

● ●●●
●

●●● ●● ● ●● ●●

●

● ●

●

●

● ●

●●

●●
●

●

●

●

● ● ●

●

●
●

●

●

●

●●
● ● ● ●

●

●

●

●

●
●

●●

●

● ● ●●● ● ●

●

● ●

●

●● ●● ●●

●

●
●

●●●
●

●

●

●●

●

●

●
●

●

●

●

●

● ●● ●● ●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●● ● ●

● ●

●

●

●● ● ●● ●●

●

●

●

● ● ●●●
●

●● ●● ●●

●

●●●● ●● ●

●

●

●

●

●

●

●● ●

●

●

●●
●

● ●●● ●●
●●

● ●
●

●
●●●● ●● ●● ●

●
●

●● ●

●

●
●

●

● ●

●

● ●●

●

●

●

●● ●
●

●● ●

●

●

●
●

●

●

●
● ●

●

● ● ●

●

●●
●

● ● ●

●

●● ●●●
●

●

●

●● ●
● ● ●● ● ●● ●

●

●
●

●

● ● ●●
●

● ● ●

●

● ●●● ●

●

●

●

●● ●●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●●●●

●

●
●●

●● ●●

●

●

●
●

● ● ●

●●

●
●● ●

●

●

●

● ●

●

●

●● ● ●●

●

●

●

● ●●
● ●●

●

●●

●

●● ●●● ●

●

●●●
●

●●●
●●●

●

●

●

●

●● ● ●● ●●● ●●●

●

●● ● ●●● ●

●

●
● ● ●●

●

● ●

●

●

●

●

●● ●● ●● ●

●

●● ●

●

●

●
●

●●●

●

● ●

●

●● ● ● ●● ●

●

●●

●●

●
● ● ●● ●● ●●●●● ●

●

●● ● ●

●
●

●

●● ●● ● ●●
●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●
● ●●● ● ●● ●● ● ●●● ●

●
●

●●

●

●

●● ●●

●

●●

●
●

●● ● ●●
●

●● ●● ● ●●
●

●●●

●
●

●● ● ●●●● ●●●
●

● ●●●
●

●
●

● ●●●

●

● ● ●● ●

●
●

●
●

●●●● ●●●

●

●●● ●●

●
●

●●
●

●
●

●● ●● ●●
●

● ● ●●●● ●

●

●

●

●

●

●●

●

●● ●●●

●

●
●

●●●● ●

●

●

●

●● ● ● ●● ● ●●● ●

●
●

●●● ●●●

●

●

●

● ●

●

●
●● ● ●

●

●
●●

●

●

●●●
●●● ● ●

●

●

●

●

●

●
●●

●
● ●

●
● ● ● ●●● ●

●

●● ●●

●

●
●

●●

●

●

● ●●● ●

●

● ●●

●

● ● ● ●●● ●

●

●

●●

●

●

●●
●

●
●

●● ●●
●

●

●

●
●

●●

●

●● ●

●

● ● ●●

●

●
●

●●

●

●

●●
● ●● ●

●

●

●

●● ●●

●

●●

●

● ●● ●●

●
●● ●

●

● ●
●

●● ● ● ●

●

●
●

●

● ●

●

●
● ●● ●

●
●

●

●

●●●

●

●●● ●
●

● ● ●

●

●

●

●

●

● ● ●

●

●●
●

●
●

●●●

●

●● ●● ●

●

●● ●● ●

●

●● ● ● ●

●

●●● ● ● ●●●●●

●

●

●

●

●

●

●
●

●

●

● ●● ● ●● ●

●

●

●

● ●
●

●

●

●

●

●
● ● ●● ●●●

●
●

●

● ●● ●● ●●
●

● ● ●● ●
●

● ● ● ● ●
●

●● ●

● ●●
●●

●
●● ● ●

●
●

●

●

●●
●

●

●

●

●●● ● ●●
●

●

●● ●

●

●●● ●

●

● ●●

●

●

●● ●●● ●
●

● ●

●

● ●
● ●● ●● ●● ●●

●
●

●
● ●●●●

●

●●
●

●

●

●

● ●●● ●● ●●●

●

●

●

●● ● ●

●

● ● ●

●

●

●

●

●●
●

● ●●●●

●
●

● ●●● ●● ●●●

●

● ●●●
●● ●●

●

●●

●

●
●

●●●● ●●● ● ● ● ●●● ●●
●

●

●

● ●●● ●●●●

●

● ●

●
●

●● ●● ●

●

●

● ●

●● ● ●●

●

● ●●● ● ●
●

●●

●

● ●● ● ●● ●●
● ● ● ●●

●

●●
●

●

●

●

●

●

●●● ●●●●● ● ● ●

●

●

●● ●●

●

●
●● ● ●● ●

●

●●●
●

●

●● ●●

●

●●

●

●●

●

●

●

●● ●● ●

●

●● ● ● ● ●● ●
●● ●

●

●● ●●● ●

●

●●
● ● ●●

●
●

●
●

●

●

●●
●

● ●●●●●●

●

● ●●●

●

●●

●

●

● ● ●

●
●

● ●

●

●
●

●

●

●● ●

●

●●●●

●

●●

●

●●● ●

●

● ●● ●● ●

●

● ●

●

●

● ●

●

●● ● ●
●

●● ●●

●

●

●

●

●● ●

●

●●●

●
●

●●

●

●●●

●

●

●

●●●
●

●

● ●
●

●
●●

●

●●●
●●● ● ●

●

●● ●● ●

●

●
●● ● ●● ●

●

● ●●●● ●

●

●●

●

●
●

● ●● ●

●

● ● ● ●●●● ● ●●

●

● ●

●

●●

●

●
●

●

●

●● ●

●
● ● ●● ●

●●

●●

●

●●
●

●● ●●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●● ●●●● ●

●
●

●● ●

●

●● ●

●

●

●

●
●

●●● ●

●

●●● ●●● ●● ●●●
●

●

●

● ●●●

●

●

●

● ●● ●● ●●

●

● ● ● ●

●

●

●

●

●
● ●

●

● ●

●

●

● ● ●● ●

●

●

●●● ●

●

●● ●

●

●●
●

●

●

●●●

●

●● ●●● ●●● ●● ● ●
● ● ● ●

●

●●●

●

● ●● ●● ●

●

● ●●●
●

● ●● ●

●

● ●● ● ●● ●●● ●
●● ●● ● ●

●

●

●

●●
●

●

●●

●

● ● ●●●

●

● ●● ●
●

●

●● ●●
●

●● ●

●
●

● ● ●●
● ●●●

●

● ●● ●● ● ●● ●

●

● ● ●
●

●
●

●
●

●

●

● ● ●●●●● ● ●● ● ● ● ● ●● ● ●●● ● ●● ●●● ● ●
●● ●●

●

●
●

●

●● ●
●

●
●

● ● ●● ●

●

● ●

●

●●● ●

●

● ●

●

● ●● ●

●

●
●

●

●

● ● ●● ●●
●

●● ●● ●●

●

●
●● ●● ●●

●

●● ●●● ● ●

●

● ●●

●
●

●

●

●●
●

●

●

●

●

●● ●

●

●

●
●

●

●

● ●

●

● ●●

●

●

●● ● ●●

●

●● ●● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●
●

●

●

●

● ● ●●

●

●●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●

●
●●

●

●
● ● ● ●

●

●

●

●

●●●● ●● ● ● ●●

●

●●●
●

●

●

●

●

● ●

●
●

●●●

●

● ●

●

●
●● ●

●

●●

●

●

●

●

●

●● ●● ● ●● ●
●

●

●

●

●

●●● ●● ●● ●●●●● ● ●●

●

●

●

●

●

●

●
●

●●● ●

●

●●● ● ●
●●

●●
● ●●● ●

●

● ●●●● ●

●

● ●●●●● ● ●●

●

●● ●●

●

● ●●● ●
●●● ●●

●

●●● ● ●
●

●●

●

● ●● ●
●●

● ●● ● ●●

●

● ●●

●

●
●

●

●

●

●

●

●

● ●● ● ●●

●

●● ●●● ●

●

●

● ●● ●
●

● ●● ●
●

●

●
● ● ●

● ●
● ●●●●● ●●

●
●

●

● ●●

●

●

●

●● ●
●●

●●●

●

● ●●
●●

●

● ●● ●● ●●

●

● ● ●●● ●
●●●

●
●

●
●●●●

●

●
●

●●●● ●● ● ●
●

●● ● ●
●

●●●●●● ●●● ●●
●

● ●● ●● ●

●

●●● ●●● ●● ●
●

●

●

●

●●● ● ● ●● ●●●● ●● ●

●

● ●●●
●

●

● ●

●

● ●

●

●●
●

●

●
●

●●● ● ● ● ●●

●

●
●●

●

● ●

●

●
●●● ●

●

●

● ●
●

●

●

●
●

● ●● ●●●

●

●
●

●

●●

●

● ●

●

●●

●●

●
● ●●

●
●● ●

●

●

●

●

●●
●

● ●

●
●

● ●●
●

●

●●●● ● ●

●

●

●

●● ●●●
●● ●

●

● ●●

●

●●●● ●● ●●
●

● ●●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●●●● ●● ●

●

●

●

●

● ●● ●●

●

●

●

●
●

●

●● ●●●

●

● ●

●

●
●

●●● ● ●● ●●

●

●● ● ●

●

● ●●

●

●

●

●

●

●●● ●

●

● ●● ● ●
● ●● ● ●

●●● ●
● ●●

●● ●●●●● ● ● ●●● ●
●

●

●

●● ●● ●
●

●

●●●●

●

●
●

●
● ●●● ●● ●● ● ●●

●

●●● ●
●

● ● ● ●●● ●

●

●

●

●

● ●
●

● ● ●

●

●● ●

●

●

●

●
● ●●●

●

●

●
●

● ●
● ●

●
● ●

●

●●● ●● ● ● ●●●●
●

●

●

● ●
●

●

● ●

●

●
●

●

●

●● ●● ● ●●

●

●
●

●

●

●

● ● ●● ●●

●

● ● ●

●

●●

●

●
●

●

●

●● ●

●

●● ●

●

●

●

●
●●

● ●● ●●

●

●●● ●

●

●●● ●

●

●● ●
● ●● ●●

●

●●

●

●●

●

●●

●

●● ● ●●● ●

●

●●●

●

●● ●● ●●

●

●

●

●●●

●

●
●

●● ●

●

●● ●

●

●

●

●
●

●●

●

●●

●

●

●

● ● ●●
●

●●
●

●● ●

●

●

● ●

●

●

● ●● ●
●

●● ●

●

●

●● ● ●●

●

●

●●
●

●

●● ●●● ●● ● ● ●
●●● ●

●

● ●●
●

● ●
●

●●

●

● ●

●

● ● ●● ●● ●● ●● ● ●●
●

●●

●

●

● ●

●

●
●

●

●

●●● ●

●

● ●

●

●
●●

●

●●●● ●● ●●
●

●
●

● ● ●

● ●

●

●

●
● ●

●

●

● ●●
● ●

●

●

●

●

●

● ●● ● ●● ●●
●● ● ●● ●●● ●

●

● ●● ●

●

●
●

●

●● ●
●

●

●●

●

●

●●●●

●

●

● ●●

●

●●
●

●

●●

●

●

● ● ●● ●

●

●

●

●
●

● ●

●

● ●
●

● ●● ●● ●●

●

● ●

●

●

●● ●● ●

●

●●● ●
●

●

●●
● ●●●●

●

●● ●
● ● ● ●

●

●
●

●

●●● ● ●● ●

●

●●

●

●
●

●● ●●
●

●
●●●

●

●

●

● ●●

●

● ● ●● ●● ●●● ● ●

●

●
●

●

●

●

●●

●

●●

●

● ●●●●

●

●

● ●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●●

●

●

●
●●

●● ●

●

●● ●
●

●

●●

●

●

●

● ●

●

●

● ●

●

●●● ●● ●●

●

●●

●

●●

●

●

● ●● ●●

●

●
●

●●

●

● ●

● ●

●

●

● ●

●

●

●

●

●
●

●

●●
●

●

● ●● ●●

●

●
● ●●

●
●● ●●

●
●

● ● ● ●● ●

●

●

●

●
●● ●

●

●● ●●

● ●

●●●

●

● ●● ●

●

●● ●

●

● ●● ● ● ●●
●● ●●● ●

●

● ● ●●

●

● ●
● ●●● ●● ●●●

●

●●● ● ● ●●

●

●●
●

●
●

●

●● ●● ●

●

●
●

●● ●● ●●●●
●

●● ●●

●

●●
●

● ●

●

● ●

●

●● ●●

●

●

●

● ●

●

●
●● ●

●● ●● ● ●●
● ●

●

●● ●
●

●●

●
●

● ●
●●

●

●● ●●

●

●

●

●

●●

●

●● ●● ●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

● ●
●

●

●●
●● ●● ●

●

● ●●● ●

●

●●

●

●●

●

●

● ●●

●

●●● ●●●

●

● ●●

●

●

●

●

●

●

●

●

●

● ● ●●

●

●● ●

●

●

●

●●
●●

●● ●●●

●

●●● ●●
●

● ●

●

●● ● ●● ●● ● ●●● ● ●●

●

●●

●

●
●

●

●

● ●

●

●

●

●●

●

●● ● ●

●

●●● ● ●●
● ●● ●

●

●

●
●

●

●
●

●

●

●

●●

●
●

● ●● ●

●

●

● ● ● ●●

●

●

●

●

●● ● ●●
●

●

●

●
●

●

●
●

●
●● ●●●●

●
●●

●

●●● ●

●

●●

●

●

●

●●

●

●●

●

●
●● ●●

●

●●
●

●

●
●

●

●

●● ●●
●

●●●

●

●

●

● ●● ●● ●

●

●● ●
●● ●● ●●●

●

●●

●

●

●

●● ●●●

●

●

●

●

●

●

●

●

●●

●

● ● ● ●● ●

●

●

●

● ●● ●

●

●●● ● ●●

●

● ●●● ●●● ●

●
●

●

●

●● ● ●●

●

●

● ●●
●

● ●●
●● ●●

●
●

●

●● ●● ● ●●

●
●

●

●

●● ●●● ●●
●

●

●

● ●●
●

●

●

●

●
●● ●

●
●

●

●

●●
●

●

●

●

● ●
●

● ●● ●

●

●● ● ●● ●●

●

●

●

●●● ●● ● ●

●

● ●● ●●● ●

●

●

● ●
●

●●● ●● ●●●

●

●

●

●● ●● ●●● ●●● ● ● ●

●

●

●●

●

●● ● ●

●

●●● ● ●●● ●●●● ●
● ●●

●
●●● ●

●
●

●●
●●

● ●

●

●
●

●
● ●

●

●

●

●
● ●

●
●●

● ●●● ●

●

●

●

● ●● ●
● ●●●

●

●

●
●

● ●● ●●● ●

●

●

●

● ● ●●● ●●●●

●

●

●

●

●●

●

● ●●

●

●

●

●●●●● ●● ●● ●●
●

●

●

● ●●● ● ●

●●

●● ●●
●

●

●

●

●

●

●

● ●●
●●

●

●

●
●

●●
●● ●●●● ●

●

● ● ●● ●●

●

●●

●

●●●

●
● ●●

●

●

●

● ●

●

●

●
●

●

●

●● ●●● ●● ●●
●

●● ●● ●●● ● ●●
●

●

●

●

●

●

●
●

● ●

●

●
●

●
● ●● ●

●●
●

●

●●●

●

● ●●

●
●

●● ●

●

●● ●

●

●●●

●

●● ●● ●

●

●●●●

●

●● ●●●●
●

●

●

●
● ● ●●

●

● ●

●
●

●●● ● ● ●● ●
●

●

●
●

●

●
● ● ●●● ●

●

● ●●

●

●

●●●

●

●●●
● ●

●
●

●

●
●

● ●

●

●

●

●
●

●● ● ● ● ●

●

●●
●

●

●

●

●

● ●

●

●●

●

●● ●● ●

●

●

●

●

● ●

●
●● ●

●
●

●●
● ●●

●
●

● ●

●
●

●● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●● ●● ●● ●● ●● ● ●● ● ●●

●

●●● ●●

●

●

●

●

●

● ●● ●
●

● ●● ●

●

●

●

●

● ● ●● ●

●
●

●●● ● ●
●

● ●●

●
●

●

●●●

●

●

●

● ●●● ●

●

●
● ●● ●

●
●

●

●

●●

●

●● ●●● ●

●

●● ●●●● ●●

●

●
●

●

●
●

● ●●● ● ● ●●●

●

● ●●

●

●

●

●

●

● ●● ●

●

●

●

●

●

● ●
●

●● ● ●

●
● ● ●●

●

●

●

●

●● ●

●

● ●

●

●
●

●

●

●

●

●

●

●●
●

●● ●●● ● ●●● ●●

●

●
●

●

●

●

●

● ●
●

●
●

●●●

●

●

●

●

●

●●

●

●● ●●●● ●● ●

●

●
●●

●● ●
●

●

● ●● ●

●

●●

●

● ●●

●

●

●

● ●●●
●●●

●

● ●

●
●● ●● ● ●●● ●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●● ●

●
●

●

● ●● ●●
●

●

●●

●

● ● ●●

●

●●● ● ● ●●

●

●

●● ● ●
● ●

●

●

●●●

●

●

●● ●● ● ●● ● ●● ●●● ● ●● ●●●● ●●●

●

● ●

●
●

● ●●

●
● ● ●●

●

● ●●● ●
●

● ●● ●

●

●
●●

●

●
●

●

●

●

●● ●

●

●

●

●

●●●●
●●

●
●

●
● ●

●

● ●●
●

●● ●● ●

●

●
●

●
●●●● ●●●

●

● ●

●

● ● ●●

●

●
●●

●

● ●●

●

●
● ●

●

●●

●

●

●

●● ●●●
●

●

●

●

●
●

●

●

●
●●

●

●● ●
●

●

●

●● ●

●

● ●●

●

● ● ●●●

●

●●
●

●

●

●

●

●●
●

●●
● ●

● ●●● ● ●

●
● ●●●●●● ●● ●●

●

●
●

●● ●●●● ●● ●● ● ●●●
● ●●

●●

●

● ●

●

●●

●

●●● ● ●● ●● ●●

●

●

●

●● ●● ● ●

● ●

●
●● ● ●

●

●●

●

●●

●

●●●
●

●

●●

●

● ●●● ●
●

●●● ●● ● ●● ●

●

●

●

●

●● ●●●● ●●●

●

● ●●●
● ●

●

●

●

●

●

●

●
●

●

●
●

● ●●● ● ●● ● ●

●

● ●●
●

●● ● ●●

●

●
●

●● ●
●

●●●
●

●

●

●● ●● ●●

●

●

●

●

●

● ●●● ●●
●

●●

●●

●

●● ●●● ●●
●

●●●●

●

●
●

●

●

●

●

●

●

●●●● ●●

●

●● ●● ● ●

●

●● ●

●

●

● ●●● ●
●

● ●

●

●● ●●● ● ●● ●

●
●

●● ● ●●

●

●

●●

●
● ●●

● ●●● ●●●

●

●●
●

●

●

●

●

●
●

●●

●

●●●
●

● ●● ●●

●

●

●

● ●●

●

●● ●

●

●

●

●

●●

●

● ● ●●● ●

●

●●

●

●●
●

●

● ●● ●●
●

●●
●

●
● ●

●
● ●● ●

● ● ●●● ●● ● ●● ●

●

●● ● ●●●●● ● ●● ● ● ●●●● ●● ● ● ●● ● ●● ● ● ●●

●

● ● ●●
●

●

●

●

●

●

●●●● ●●● ● ●●●●● ●● ● ● ●● ●

●

●

● ●
●

●

●

●
● ●

●

●

●

●

●

●● ●● ● ●● ●

●

●●●
● ●●●

●

●

● ●

●

●
● ●

●

●● ●

●

●●●

●

● ● ● ●

●

● ●● ●● ●● ●●

●
●

●

●

●
●● ●

●

●● ●

● ●

● ●
●

●●● ● ● ●

●

●

●

●

●

●

●

●

●

●● ●●● ● ●●●

●

●
● ●●

●

●
●

● ●●● ●

●

●

● ●●● ●●● ●●
●

●● ● ●

●

●

● ●● ●

●

●

●

● ● ●●●● ●● ●● ●●

●
●

● ● ●● ●

●

●● ●●●

●

●
●

● ● ●

●

●

●
●

● ●
●

●●
●● ●

●
● ●●

●

● ●● ●●● ● ● ●●●

●

●

● ● ●● ●●

●

● ●● ●● ●
●

●
●

●● ● ●

●

●●

●

●●●
●

● ● ●●●● ●
●

●

●● ●● ●
●

●

●●
●●●

●

●● ●●●●

●

●
●

●

●●● ●●● ● ●●

●

●● ● ●●●●
●

● ●● ●
●●

●●● ●● ● ● ●

●

●● ● ●●
●

● ●

●

●

●●

●

●●

●

●●
●

●● ●
●●

●

● ● ●●

●

●

●

●
●

●

●
● ● ●● ● ●●● ●● ●

●
●

●● ● ●●
● ● ● ●●● ● ●

●

●

● ● ● ●●

●
●

●

●

●

●

● ●

●

●

●

●

●● ●●

●

●

● ● ●
●

●

●

●

●

●

●
●● ●

●

●●● ● ●
●

●● ●

●

● ●

●

●

●

●

●

●

●
●

● ●● ●● ●●
●

● ● ●●

●
●● ●● ● ●● ●

●

●

●●●
●

●
●

●

●

●

●

● ●●●
●

●● ● ●●

●

●● ●●●●

●

●● ●●

●

●

●

●

●

● ●

●

●●
●

●● ●● ●●

●

●

●

●

● ● ●●

●

● ●●

●

● ●
●●●●

●

● ●●
●

●

● ●●●●

●

●● ●● ●

●

●

●

●

●

● ●

●

●

● ●

●
●● ●

●

●

●

●

● ●● ●●●

●

●
●

●●●● ● ●● ●● ●●

●

●
●● ●

●
● ●

●
● ●●● ●

●

●
●

● ●

●

●

●

●● ●
●

●
●● ●●

●
● ●●

●
● ●

●

●●
●

●

●

●● ●
●

●● ●● ●

●

●● ● ●●● ●● ●●●●
●● ● ●

●
● ●● ●●●● ● ●

●
●●

●

●

●
●

● ●●● ●● ●● ●● ● ●

●

●
●●

●
●

●

●

●●
● ● ● ●

●

● ● ●

●

● ● ●

●

●

●

●

●

●

●

●

●

● ●● ●●●●

●

●

●

●● ●● ● ●●●● ●●

●

●●

●

● ●

●●

●

●
●

●● ● ●●

●

●

●

●

●

● ●

●

●● ● ● ● ●●●●

●

● ●●●● ●● ●● ● ● ●●
●

●●
●

●

●
●

●

●

●

●●
●

● ●

●

● ●

●

●● ●●

●

●●

●

●

●

● ●● ●

●
●

●

●● ● ●

●
● ●● ● ●●● ●

●

● ● ●● ●●● ●● ●

●

●

●●●●
●

●
●

● ●●●●
● ●

●
● ●

●

●

●

●● ● ●●

●

●

●● ●●● ● ●●

●

●● ● ●●● ●● ● ●
●

●

●

●●
●

● ●

●

● ●●

●

●
●
● ●● ●

●

●

●

●● ● ● ●

●

●

●

●●
●

●

●

●●● ●

●

●

●
●

●

● ● ●●

●

● ●●
● ●●

●
●

●

●

● ●●● ●●●

●

●●●
●●

●

● ●●● ●
●

●

●

●

●

●●

●
●

●

●

●●● ● ●

●

●

●● ●●● ● ●

●

●

●● ● ●●

●

● ●● ●

●

●●

●

●●

●

●

● ●●

●

●
●● ●

●

● ●● ● ●●● ● ●●

● ●

●●

●

●

●

● ●●
●

●

●●● ●●
●●●

●
●

●

●● ●

●

●● ● ●
●

●

●

●

●

●●● ●●● ● ●●

●

● ●

●

●
●

●●

●

● ●
●

● ●●
●

●
●

●

●

●

● ●●● ● ●●
● ● ●● ● ● ●

●

●

●●●● ● ●
●

● ● ●●

●

● ●● ●

●

●

●

●● ●● ●

●

●● ●●● ● ●● ● ● ● ●●
●

●●● ●●● ●

●

●●●● ●

●

●

●●
● ●

●

●●● ●● ● ●●● ●

●
●

● ●

●
● ●

●● ●●● ● ● ●● ● ●●●
●

●

●

●● ●● ●
●

●

●● ●● ●● ●

●

●
●●●

●

●

●

●

●

●
●

●

●●

●

●

●

● ● ●

●

●●●●●●● ● ●
●

●

● ●

●

●●

●

●

●

● ●

●

●

●●
●

● ●

●

●

●

●

● ●● ●●●● ●● ●●●

●

●
●

●●●

●

●
●

●
●●

●

●●
● ●

●

●●● ● ●● ●● ●

●

●

● ●●●
● ●● ●●

●
●● ●●

● ●

●

● ●

●
● ●●●●●

●

●

● ●●● ●●

●

●

● ●●

●

●

●

●
● ●●

●

●●

●

●● ●● ●

●

●

●

●●● ● ●

●

●

●

●

●

● ●
●● ●

●

●

●●

●

●●●●

●

●
●

●

●●●●
●

●

●● ●

●

●●
●

● ● ●
●

●●●

●

●●●

●

●

●● ● ●

●

●●● ●● ●

●

● ●●●

●

● ●●●

●

● ●● ● ●● ●●●● ● ●● ●

●

●
●

● ●

●

●● ●● ●

●

●
●● ●

●

● ●

●

●● ● ●●●● ●● ● ●
●

●

●

●● ●●● ●●● ●●● ●●● ●●●

●

●

●●
● ●● ●● ●

●
●●

●

●● ●

●

●
●

●
●

●

●

●●
●●

●
●●●

●
● ●●

●

● ●● ● ●● ●● ●●●

●

●

●
● ●● ●●

●

●● ●●● ● ●
●

●

●●
●

●

●●
●

●● ●
● ●

●

● ●

●

●

●

●● ●

●

●●● ●● ●

●

●●

●

●

● ● ●●
● ●

●

● ●

●

●

●

●
●

●

●
●

● ●
●●

● ● ●●

●

●

●●

●

●
●

● ●● ●
●

●

●

●

●

● ●●

●

● ● ● ●● ●●●

●

●

● ●●

●

● ● ●
●

●

●

●

●●

●

●

●●
●

● ● ●
●
● ●●● ●

●●

●

●●

●

● ●
●

● ●

●

●●● ●

●

●● ●●●

●
●

●●● ● ● ●● ● ● ●●

●

●

●

● ●●

●

●

●● ●● ●●●

●

● ● ●

●

●

●

●

●

●
●

●

●● ●● ●

●

● ●●● ●● ● ●● ●● ●

●

●● ●● ● ●●● ●

●

● ●● ●

●

●●● ●● ●●

●

● ●

●

●

● ● ●

●
●

●

●

● ●

●

●●

●

●●

●
● ●●

●

●

●●● ●
●

● ● ●●
● ● ●

●

● ● ●● ●● ●

●

●

●

●●

●

●

● ●

●

●

●

● ●●●
●

● ●

●

●

●

●

●●

●

●

●

●

●

● ● ●●●

●

●
● ●●

●

●

● ● ●●● ●

●

● ●
●

●

● ● ●●●●●
●● ●● ●●● ● ● ●● ●

●

●● ● ● ●● ●
●

●

●●●
●

● ●● ● ● ●● ● ●● ●● ●● ●● ●●
●

●

●

●
● ●

●

●

●

●

●

●● ●

●

● ● ●●● ● ●

●

●●

●

●
●

●

●

●

●

●

●

●

● ●●
●

● ●●● ●
●

●
●

● ●
●

●

●

●
●

● ●
● ●

●●
● ●

●
●●● ●● ●

●

●

●

●● ●● ●●

●

●●
● ● ●●● ●● ● ●

●
● ●

●

●

●

●

●

●●
●

●

●

●
●●●●

●
●

● ●

●

●

●

●

●

●●● ●● ●● ●
●

●

●

●

● ●● ●● ●●
● ●

● ●
●

●●

●

●● ● ●
●

●

●
●

●

●● ●●●

●

●●● ● ●● ●●●● ● ● ●
●

●

●● ● ● ●

●

●● ●
● ●● ●●

●

●● ●●

●

●●

●
●

●●● ● ●●
●●

●●● ● ●● ●

●

●

●● ● ● ●● ●●

●

●●

●
●

●●
●

●● ●
●

● ●● ●

●

●

●

● ●●
●● ●

●
●
●

● ●

●

● ●

●

●●●● ● ● ● ● ●●

●

●● ●● ●●● ●● ●● ● ●

●

● ●●
●

●

●

●

●

●

●● ●
●

●●● ●● ●● ●●
●

●● ● ●

●

●

●

●●● ●

●

● ●
●

● ●●
●

● ● ●●

●

●●

●

●●●●●
●●

●
● ●●● ●● ●

●

●

● ●

●● ●●

●

●

●●

●

●●

●

●

● ●

●

●●●
●

●

● ●
●

●

● ●
●

●●

●

●

●

●

●

● ●● ●

●

●● ●● ●● ●●●
●●

●

● ● ● ●

●

●●
● ● ●●● ●● ●

●

● ●● ●● ●

●

●
●

●

●

● ●●
● ●

● ●●● ● ●● ●●
●● ●●● ●●● ●● ●

●

●

●
● ●

●● ● ●● ●● ● ●●● ●

●

● ●
●

●

●

●

●

●
●

● ●● ●●
●

● ●●

●

● ●

●

● ●●
●
●● ● ●

●

● ●● ●● ● ● ●

●

●

●●

●

●

●

● ● ●
●

● ●

●

●

●

● ●●

●

●
● ●

●

● ●

●

●

●
●

● ●

●

● ●●●●

●

●●
●

●● ● ●●● ●● ●●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
● ●●

●

●● ●●

●

●

●

●

●

●

●
●

● ●

●●● ●●

●

●

●

●

●

● ● ●●● ●●

●

●
●●

●
●

● ●●● ●

●

●

●

●

●

● ●● ●

●

● ●
●

●● ●
● ●

● ● ●●

●

●
●

● ●

●

●●

●

●

●●●● ●
●

●

●

● ●● ●

●

● ●●●● ●● ●●
●

●● ● ●
●● ●●●

●
●

●

●

●

● ●

●
●

●
●

●● ● ●

●
●

●

●●●●●

●

●

●

●●

●

● ● ●● ●

●

●

●●

●

●

●

●●
●

●
●

●
●

●

● ●

●

●
●

●●
●

●

●
●

●

●● ●
●

● ●● ●
●

●

●

●

●
●

●

●

●●●● ●

●

●
● ●

●
●● ●● ●

●

●●

●

●

●

●●

●

● ●●

●

●

●

●●●●

●

●

●

●● ●● ●● ● ●
●●

●

●

● ●

●
●

●●

●● ● ●
●

● ●●● ●● ●●●
●

● ●● ●●

●

●
●●

●

● ●● ●●●● ● ●

●

●●●

●

●

●

●● ●● ●● ● ● ●● ●● ●●● ●
●

●

●
●●●

●

● ●●
●

●● ●● ● ●● ●

●

●
●

●
●●

●

● ●●

●

●

●

●

●

●●●●

●

●●● ● ●● ● ●●● ●● ● ●●

●

●●
●●

●

●●

●

●● ●
●

●●● ● ●

●

●

●

●● ●●● ● ●● ●
●

●
●

●

●
●

●

●●● ●
●

●

●● ●● ●● ●

●

●

●

●
● ●

●

●●

●

●
●

●

●●● ● ●●●● ● ●● ● ● ●● ●

●

●● ●
●

●

● ●
●

●

●

●●● ● ● ●

●

● ● ●

●

●
●

●

● ●●

●

● ●

●

●● ●

●

●

●
●

●● ●
● ●● ●

●
●● ●● ●● ● ●

●

●
●● ●

●

●

●●● ● ● ●●
● ●

●

●

● ●

●

●

●
●●●

●

●● ●●

●

● ●● ●●

●

●

● ●●
●●

●
● ●

●● ●●

●

●
●● ● ●

●

●

●

●

● ● ●●● ●● ● ●

●

● ●
●

●

●

●

●

●

●

●●

●

●

● ●
●●

●

●● ●● ●●● ● ●

●

●●

●

● ● ●●●●

●

● ●●

●
● ●●●● ●●

●

●
●

●

●

●

●● ●

●●

●
●

●●●
●

●● ●
●

●

●

●

●

● ●● ●
● ● ●●

●

● ●

●

●

●

●●●● ●●
●

●

●

●

● ●●

●

●

●

● ●● ●

●●

● ●●●

●

●
●

● ●●● ●●●● ●

● ●

● ●

●

●

●

● ●●

●
●

●

● ●●

●

● ●
●

●

●

●●

●

●●

●

●● ●
●

● ●● ●●

●

●

●● ●● ● ●● ●●●

●

● ●

●

●● ●● ●●●●

●

●
●

●●

●

●● ●●
●

●●● ●

●

● ●●

●

●●●
●

●

●●

●

● ●●●
●●

●

●

●●

● ●●

●

●
● ●●

●

●●

●

●

●● ●

●

●

●

● ●
●

● ●●

●

●

●

● ●
●
●

●●
●

●●

●

●
● ●●●

●

●●●● ●● ● ●

●

● ●● ●

●

● ●● ● ●

●

●● ●●●●
● ●●

●

●● ●● ●● ● ●● ●● ● ●

●

● ●
● ● ●

●

●

●

● ●● ●
●

●

●

●● ●● ●● ●●● ● ●

●

● ●●● ●●

●

●● ●●●

●●

●

●

●

● ●● ●● ● ●● ●
●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●● ●

●

● ●● ●●● ● ●● ●●● ●●●
●

●●

●

● ●●●

●

●

●

●● ●

●

●● ●●
●

●● ●
●

●

●

●● ● ●

●

● ● ●●

●

●
●

●

●●● ●●

●

● ●● ●●
● ●

●

●
●

●● ●●●

●

●

●● ●● ● ●● ● ●

●

● ● ● ●●●
●●● ●

●
● ●

●
●●

●● ● ● ●

●

●

●

● ●●● ●●

●

● ●

●

●● ●

●

● ●● ●● ● ● ●●● ●● ● ●●
●

●

●●● ●● ●● ● ●●●

●

●●● ●●

●

●● ●

●

●

●●

●

●● ● ●

●

●●● ●
●●

●
● ●●●● ● ● ●●● ● ●● ●●

●

● ● ●●
●● ● ●●● ● ● ●● ●● ● ●●● ●●●● ● ●

●●

●●
●

●

●

●●● ●

●

● ●

●

● ●

●

●

●● ● ● ●●●
● ●

●●●● ●● ●●

●

●● ●

●

●

●

●● ● ● ●

●

● ●
●

●
●

●

●

●

●

●● ● ● ● ●● ●

●

●

●

●● ●

●

●
●● ●●
●

● ● ●● ●● ●●

●
●

●●
● ● ● ●● ●●● ●●●

●

●

●

●● ● ● ●

●

●
●

●●

●

● ● ●

●

● ● ●● ●●● ●

●

●
●

●
●

●
●

●

●

●

●●● ●● ●
●

●

● ●

● ●●

●

●
●●

●
●

●●

●

● ●● ●●
● ●

●● ●● ●●● ● ●● ●●
●●

●

●●● ●

●

●

● ●●

●

● ●
●

● ●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

● ●

●

●
●

●
●

●

●

●

●● ●

●

● ● ● ●●● ●

●

● ●● ●

●

● ●●

●

●

● ●●

●

●●
●

● ● ●● ●
●

●● ●● ●●●● ●●● ●● ●●

●

●●

●
●

●●

●

●
●

●

●●● ●●
●

●

●●●●●●
●●

●

●●● ●● ●●●

●

● ●●●●

●

●
● ● ● ●●

●

●

●
●

●
●

●● ●●

●

●
●

●●●
●

●● ●●● ● ●

●

●

● ● ●● ● ●

●

●

● ●
●

●

● ● ●● ● ●●●●

●

●

●

●

●

●

●
● ●

●
●● ● ●

●
● ●● ●●

●● ●●● ●

●

●
●

●

●

●
●

● ●● ●
●

● ●●
●●

●

●

●

●

● ●

●

●
●

●
● ●

●

●

●●

●

●

●

●

●
●●

●

●

●
●

●●● ●● ●● ●

●

●

●

●● ●

●

●●●
●

● ●●
●

●

●

●

●
●● ●

●

● ●●
●

●● ●

●

● ●●
● ●

●

●
●

●

●●

● ●
●

● ●● ●● ●● ●●●●● ●

●

●

●

●●●●

●

●● ● ●● ●●● ●

●

● ●●

●

●

●

●

● ●● ●

● ●

●●
●

●
●

●

●● ● ●●●
●

●

●
●

●

●

●

● ●

●

●

●●
●

●

●
●● ●● ●

●

●

●

●

● ●●● ● ●

●

●● ● ●● ●
● ●●

● ●● ●●

●

●

●

●

●

●
●

●
●● ●

●●
●

●
● ●

●●● ●

●

● ●

●

●

●● ●●

●

●● ●
● ● ●

●●

●

● ●● ●●● ● ●
●

●

●
● ● ●●

●

●

●

●

●

●

● ●●

●

● ●●

● ●

●
● ●● ●●

●

● ●
●

●● ● ●

●

●

●

● ●
●

●●●
●

●● ● ●●
●

●

●●●

●
●

●

●● ●

●

● ●●

●

●

●

●

●●

●
● ●

●

●●

●

●●

●

●● ●

●

●● ●● ●●

●

● ●●●●
●

● ●

●

●
● ●● ●●

●

● ●●

●

●● ● ● ●

●

● ●● ●

●

●

●

●

●
●

●
● ●

●

●●

●

●●●● ● ●●● ●

●

●

●

●

● ●● ●● ●

●

●
●

●

●●● ●● ●●

●

●● ●
● ●

●
●

●

●

●

●

●

●

●

●●

●

●● ●●

●

●●

●

● ●●●
●

●

● ● ●●●

●

●
●

●

●

●

●

●

● ● ●●

●

●●●
●

●

●

● ●●

●

●● ●●●● ● ●●

●

●● ●●

●

●

●
●

●

●

● ●

●

●●●
●

●●

●
●

●

●●●

●

● ● ●●●●●
●● ●● ●● ● ●●●

●
● ●●

●

●

●

●

●
●

●

● ●●

●

● ●
● ●

●●● ● ●●

●

● ●

●

●
●

●

●
●

●

●

●

●●●●
●

●

● ● ●

●

● ●

●

● ●

●

●

●
● ●●● ● ●

●

●● ● ●●

●

●
●● ● ●● ● ●●

●

●

●

●
●

●

●●

●

● ●●● ●

●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●● ●

●
●●

●●●

●

●●

●

●

●

● ●

●

●●

●

● ● ●

●

●
●

●

●

●

●● ●
●

●● ●●
●
●

●●● ●●

●

● ● ●● ● ●

●

●

●

●
●

●

●

●●
●● ● ●

●

●

●

●

●

●

●●

●

●● ●
●●

●

● ●
●●

● ●

●

●

●

●

●

●

●● ●● ●●
● ● ●●● ●

●
● ● ●

●

●●

●

●● ● ●● ●● ● ●
●

●●● ●●

●

●●
●

● ●●
●

●

●● ● ●
●

●●●
●

●

●

●
●

●

●

●

● ●●

●

●● ●
●

●
● ●

●
● ●● ●● ● ● ●● ●●

●● ●

●●

●
●

●
●● ●●

●

●● ●

●

●

●

● ● ●

●

●

●
●

●●

●

●

●

●
●●

● ●●●

●

● ●●
●

●

●● ●●

●

●
●

●● ●●● ●●●

●

●● ●●●●
●

●●● ● ●● ●●● ● ●●

●

●● ● ● ●
●

●

●

●

●
●

●
● ● ●●

● ●● ●● ●●
●

●

● ●● ●●
●

●●

●

●● ●●
●●

●●●●
●

● ●

●

●

●

●
●

●●● ●● ●

●

● ●
● ● ●

●● ●●
●● ●

●
●● ●

●

● ●
●

●

●● ●● ● ●● ●●●
●

●●●● ● ●

●

●● ● ●

●

● ●

●

●

●
●

●

●●●
●●

●

●

●

● ●

●

● ●

●
● ●

●

●● ●● ●●

●

●●●● ●●
●

● ●
●

●

●

● ●

●

●●
●●

●●
●

●
●

●●

●

●

●
●

● ●

●

●

●●

●●

●

●● ●●

●

●
●

●
●● ● ●

●

● ●●●●● ●● ●

●

●●

●

●

● ●●●

●

● ●●

●

●

●

●● ●● ●

●

●

●

●

●

●

●
●●

● ●

●●● ●● ● ●●●
● ●

●● ● ●
● ●

●

●

●

●

●

●● ●●● ●●

●

●

●

●

●

●

●
●● ● ●● ●●

●

●

●

●

●
●

●● ●●● ● ●●● ●●● ●●

●

●●●

●

● ●● ●● ●

●

●●
●

●● ● ●●

●

●● ●

●

●

●

●● ●● ● ●●

●

●

●
●

●

●●
●

●
●

●●

●

●

● ●

●

● ●
●

●●

●

●

● ●●● ● ●●

●

● ●
●

●

● ● ●

●

●

●

●
●

● ●●
●

●

●

●● ●● ●● ●● ●●

●

● ●● ●

●

●

●

●

●

● ●● ●

●

●
●

●

●

● ●●

●

●●● ●

●

● ●●
●● ●● ● ●● ●● ● ●●●●

●

●
●

●● ●● ●

●

●
●

● ●●

●

●

●● ●●● ●● ●●● ●●

●

●
●

●● ● ●

●

●●
●
● ● ● ●● ●

●

●
●

●

●

● ●● ●

● ●

●● ●

●

●

●

●
●

● ●● ●●● ●● ● ● ●
●

●

● ●●

●

●

● ●● ●
●

●

● ●●
●● ●● ●●● ●● ●

●

●

●

● ●● ●●●●
●

●

●● ●
●●● ●

●
●●● ● ●●● ●●

●

●● ●

●

●● ● ●●

●

●● ●
●

●●

●● ● ●●

●

●● ● ●●●

●

●

●

●

●

● ●● ●● ●●

●

●●● ●● ●

●

●

●

●●
●

●●● ●

●

●

●

●

●

●● ●● ●●

●

● ●

●

●

●

●

● ●●● ● ●●

●

●● ●● ●
●

●● ●●●
●

●

●●

●

●● ●●●● ●

●
● ● ●● ●●

●

●

● ●●
●●●

● ● ●●●
●

●

●

●

●

● ●●

●

● ● ●●

●

●

●

● ● ● ●●
●●● ● ●●

●

● ●● ● ●
●

● ●● ●
●

●

● ●

●

●

●

●

●

●

●

●

●
●

● ●●●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ● ●●

●

●

● ●●● ●

●

●

●

● ●●

●

●

●

●

●

●
● ●●

●

●●● ●●
●

●

●

●
●

●● ●●

●

●●● ● ● ● ●● ●●●● ●

●

●

●

●● ●● ●

●●
● ● ●● ●● ●●● ● ●● ●● ●

●

●
●● ●

●

●

●

● ●
●

●
●

●● ● ●

●

●
●●

●

● ●●● ●●● ●

●

● ●● ● ●●● ●●

●●

●

●
● ●● ●●●● ●

●
●● ●●● ● ●● ●

●

●

● ●●●●
● ●

●
●

●

●

●

●

●

●

●

●
●

● ●●●

●

●● ●●

●

●●● ● ●
●

●
●

●
● ● ●●●● ●

●

●
●

●
●●

●
●

●

●

●
●

●

●
●

●

●

●
● ●● ●

●

●●●●

●

●

●

●●
●●● ●●● ●● ●

●

●

●

●

●

●

●
●● ● ●●

●
● ●●

●

● ●●

●
●

●●●● ●
●

●● ● ●

●

●● ●

●

●● ●

●

●

●

●

●

●

●●
●

● ●●●
●●

●●

●● ●● ● ●●●●

●

●

●

●

●

●

● ●

●

● ● ●●
●

● ●●● ●● ●● ●●●
●

● ●●● ●●● ●
● ● ●●●

●

●
●

●
●●● ●●

●

●●●

●

● ●●
●

●●
● ●

●

●

●●● ●● ●
●

●
● ●●●● ●●

●
●● ●●

●

●

● ●
●

●

● ●● ●

●

●● ●●

●

● ●●●

●

●

● ●● ● ●

●

● ●

●

●
●

●

●

● ● ● ●

●

●

●

●

●

●

●● ●●

●

●● ●● ●

●

● ●●●●
●

●

●

●●● ● ●●

●

● ● ●

●

● ●●
●

●
●

● ● ●● ●●● ●

●

●

●

●●
●

●

●

●● ●

●

●● ● ●●

●

●● ●● ●

●

●
●

●

● ●●

●

● ●●● ●

● ●

●

●

●

●● ●

●

● ●

●

●● ●

●
●

●●● ●● ●● ● ●●
●

● ● ●

●

●

●

● ●● ●

●
●

●

●

●
●

●

●

● ● ●●●

●

●

● ●●

●

●

●●
●

●

●
● ●

●

● ●●● ●● ●

●

● ●●● ●●

●

●● ●●

●

● ● ●● ● ●● ●

●●

● ● ● ●●●
●

●

●

●

● ●
●

●● ●●

●

●● ●

●

●●
●● ● ●

●

●● ●●● ● ●●● ●● ●
●

●

●

● ● ●● ●● ● ●●

●

●● ●● ●
●

●●● ●● ●
●

●

●● ● ●

●

● ●

●

●● ● ●● ●●
●

●

●
●

● ●

●

●● ●
●

●

●

●●

●

●● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●●
●

●
●

●● ●●

●

●

●

● ●
● ● ●

●
●● ●

● ●● ●
●●

● ● ●●

●

●●
●●

●

●

●

● ● ●● ●● ●● ●

●

●●●
●

● ●
● ●

●

● ●

●●

●
●●

●
●

●

●● ●● ●
● ●●

●
●

● ● ●●

●

● ●● ●

●

●● ●● ●

●

●●

●

●● ●● ●● ●●

●

● ●
● ●●● ●●

●

● ●●●●●● ● ●

●

● ● ●●●

●

●

●
●● ●● ● ●● ●

●

●

●

●● ●●● ●● ●

●

●

●

●

●

●

●

●●

●

● ●

●

● ● ●●● ● ● ●●●●

●

● ● ●● ●● ●●

●

●
●

●
●

●

●●● ●●

●

●●● ●● ●

●

● ● ●● ●● ●
●

●
●●

●●

●

● ●

●
●

●

● ●● ●●

●

●

● ●●
●

●
●

●

● ●

●

●● ● ●

●

●

● ●●● ●●
● ●

●

●

● ● ●●

●
●

●● ●
● ●

●

● ●

●

●● ●

●

● ●● ●● ● ●●
●●

●

●

●
●

● ●
●

●

● ●●
● ●

●

●

● ●●

●

● ●●●●

●

●●

●

●
●

● ●

●

● ●● ●●
●

●

● ●●●●

●

●

●

●

● ●
●

●
● ●●

●

● ● ●● ●

●

●● ●●

●

●● ●

●

●●

●

●
●● ●●

●
●

●

●●● ●

●

●
●

● ●● ●
●

●

●

●

● ●

●●

●

●

●

●

●

●● ● ●●●● ●

●

● ●
●

●

●

● ●● ● ● ●● ●●

●

●●

●
●

●●●

●

●● ●●● ●

●

● ●●● ●
●● ●

●

● ●● ●● ● ●
●

●●
●● ● ●

●

●● ●●● ●● ●● ●

●

●● ●●

●

●● ● ● ●●● ●

●

●●●
● ●● ●●●

●

● ●● ●●

●

●

●

●

●

●

●
●

●

●●
●

● ●

●

● ●● ●

●

●

●

●

●

●

●

● ●●

●

● ● ●

●

●●
● ●

●

●

●

● ● ●● ●●● ●● ●● ●●
●

● ● ●●

●

●
●●

●●
●●●

● ● ●●

●

●● ●

●

●
●

● ●●● ●●

●
●

●

●

●

●

●

●

●

●

●●
● ●●

●● ●

●
●

● ●● ●●
●● ●

●

● ●● ●●● ●

●

●● ●
●

●●● ● ●● ●●●

●

●●
● ● ●●● ● ●●●

●

● ●

●

● ●

●●● ●●● ●●
● ●● ●● ●● ● ●●● ●● ●

●●
● ●● ●●

●●

● ● ●● ●● ●
● ●

●

●

●

●

●● ● ● ●●● ● ●●
●

● ●●● ●● ●●●
●

●

●
●

●

●●●●
●

● ●

●

●●

●

●

●● ●● ●

●

● ●●

●

●

●

● ●● ●

●

●●● ● ●● ●● ● ●●

●

● ●●

●

●●

●

●

●

●
●

●

●● ●
●●

●

●

●● ●

●

●
●

●

●●● ●● ● ● ●●
● ● ● ●● ●

●
●●

●

●● ● ●
●

●● ● ●●● ● ●● ●

●

● ●●
● ●

●● ●
●

●● ●●

●

●●

●

●●● ●● ●● ●●● ●● ●

●

●● ●●●● ●●

●

●

●

●

●
●

●

●

●● ● ●● ●● ●●

●

●
●● ● ●●

●● ● ●●●●

●

●

●●

●

●

●● ●

●

●●●

●

●
●●● ●

●●
●

●

●

●

●
●

●
●●

●●

●

●

●

●

●● ●● ●● ●

●

●
●

●

●

● ●● ● ●● ● ●●
●

●

● ●
●

●

●

● ●●●● ●●

● ●

●● ●●●
●

●

●

●

●

●● ● ●

●

● ●● ●●● ●●●● ●●● ● ●

●

● ●
●

141

BIN 0

69

BIN 1

27

BIN 2

14

BIN 3

0

32

64

96

128

160

192

224

0 32 64 96 128 160 192 224 256
Packet Criticality (8b)

P
ac

ke
t D

el
ay

 (
C

yc
le

s)
(d) Hoplite-Q*

Figure 4.11: Packet delay distribution on 8×8 NoC for 4-application synthetic
workload across various Hoplite NoC designs at 50% injection rate.

Answer: Hoplite-B delivers up to 2.4× improvement over Hoplite across the tested

traffic patterns, and only fails to improve throughput when there is an inherent net-

work bottleneck resulting from the DOR deflection routing policy. On most syn-

thetic traffic patterns, the addition of the buffer improves throughput performance

by 1.2–1.5×.

4.5.3 Effect of Priority (Hoplite-Q*)

Question: What is the effect on packet latency distribution under existing/proposed

Hoplite NoCs when priority is introduced?

In this sub-section, we quantify the effect of priority-aware routing on a 4-application

synthetic workload (UNIFORM RANDOM traffic, 32K packets) by measuring packet

delay distributions in each priority class. Each application is assigned its own

priority bin with a 2b static tag, used by Hoplite-Q NoC, and a 6b dynamic tag

that is incremented per deflection by the Hoplite-Q* NoC. In Figure 4.11, we see

the results of this experiment.

81

We track the number of extra cycles spent in the network by each packet due to

deflections (Cyclesobserved - Cyclesideal). Here, ideal cycles are computed simply as

the Manhattan distance in absence of congestion. We then highlight the worst-

case latency in each bin to quantify the quality-of-service outcomes observed in

each bin.

Below are our observations based on these experiments:

• In Figure 4.11a, the Hoplite router produces quantized levels of delay that are

in multiples of 8. This is due to the 8×8 system size, and associated 8-cycle

deflection in the X-plane. The worst-case latency delay suffered by a packet is

112 cycles, which indicates 14 deflections. We observe a uniform distribution

of packet delay cycles in each priority bin as baseline Hoplite is oblivious to

application priority.

• In contrast, Hoplite-B results in Figure 4.11b show a smoother packet delay

distribution as packets may wait in the buffer upon deflection. The worst-case

latency has improved to 82 cycles, but the packet delay distribution is still

uniform across all priority bins.

• The Hoplite-Q NoC delays shown in Figure 4.11c indicate a priority-sensitive

delay distribution across priority bins. The higher-priority bin now sees a worst-

case delay of only 13 cycles, while the least-priority bin sees a worst-case delay

of up to 1024 cycles. Thus, better performance in the higher priority bin comes

at the expense of significantly lower performance in other bins, and the packet

delay distribution highlights the need for a dynamic priority-update feature that

mitigates the observed aggressive starvation of low-priority packets.

• The results with the Hoplite-Q* NoC (Figure 4.11d) showcases a more balanced

solution by accounting for dynamic conditions in the NoC. The worst-case la-

tency suffered by a packet in the highest-priority bin is now 14 cycles while that

in the lowest-priority bin is a much more reasonable 141 cycles. This marginally

sacrifices the performance of the higher priority bins for balanced outcomes

across all other bins.

Answer: Hoplite and Hoplite-B produce a uniform packet latency distribution

across varying priority-levels, while Hoplite-Q and Hoplite-Q* give a decaying

curve that indicates sensitivity to packet priority. Hoplite-Q* delivers the best

balance between priority-aware routing and worst-case packet delay.

82

4.5.4 Priority-Tag Bitwidth

Question: How many bits (P) should be reserved for the priority-tag in the NoC?

How does it impact throughput performance of the top-priority application as num-

ber of concurrent applications is varied?

One of the key design considerations is the bitwidth allocation for the priority-

tags, especially with dynamic priority-updates in Hoplite-Q*. We now experiment

with mixed-priority, multi-application BSP workloads where a varying number of

applications are sharing the compute and communication resources available on

the NoC. We take a single real-world BSP application (bp1600) and replicate it

multiple times while assigning a different priority class to each replicated copy.

Figure 4.12 shows the throughput improvements observed on the top-priority ap-

plication with Hoplite-B, Hoplite-Q, and Hoplite-Q* NoC when compared to the

baseline Hoplite NoC.

In order to interpret Figure 4.12 correctly, we first highlight two factors that impact

the experimental observations in unpredictable ways:

1. Figures 4.12a, 4.12b, and 4.12c are speedup comparisons against the Hoplite

NoC. Since the Hoplite router is agnostic to any priority-tags attached to

packets, there is some randomness in the runtime of each application, which

when compared to as a baseline can result in the observed minor fluctuations

in speedup at varying configurations.

2. Another source of randomness is the placement of applications on the overlay.

Since the NoC has a 2D unidirectional torus topology, placement of the

application graphs can have a significant impact on runtime performance,

simply because of the long wrap-around enforced by the unidirectional torus

layout. For example, PE (0,0) sending packets to PE (0,1) has a very different

communication profile than the converse, where the packets from PE (0,1)

to PE (0,0) have to traverse the entire length of the overlay to wrap back

around to reach their destination. To isolate the effect of priority-aware

routing, we use a simple application placement strategy where we try to

partition the overlay equally such that each application is allocated a fair

share of the compute resources. In Figure 4.12, the compute resources (i.e. 64

PEs) are not equally divisible for certain configurations (e.g. 5 concurrent

applications), which can also result in some of these observed fluctuations.

83

Sometimes, the placement of an application to a block of PEs can just get

(un)lucky, which has a higher tendency to occur when a larger number of

applications (i.e. larger number of priority classes) are present.

Nevertheless, despite the QoS delivery being susceptible to these random effects,

they do not have a significant impact on overall performance, as we obtain a

desirable QoS behaviour for top-priority application packets.

Across all designs in Figures 4.12a, 4.12b, and 4.12c, we see an increase in the

speedup as number of applications is increased. This can be attributed to the

increase in communication traffic that causes each overlay to achieve its peak

sustained throughput. For example, when < 5 applications are instantiated on

the overlay, Hoplite-B delivers only about 10–20% improvement over Hoplite (see

Figure 4.12a), all of which can be attributed to the usefulness of the buffer in

mitigating the effects of deflection. However, as observed in Figure 4.9, Hoplite-

B is capable of delivering up to 1.5× improvement in speedup over Hoplite (at

an 8x8 overlay configuration). When the number of concurrent applications is

increased, we observe the speedups increase to ≈1.45×. Since there is no priority-

aware arbitration inside Hoplite-B, the net speedup of the top-priority application

is slightly below the expected peak simply due to randomness.

Contrast that to Hoplite-Q and Hoplite-Q* in Figures 4.12b and 4.12c respectively,

where speedups to the top-priority application breaks past the 1.5× “buffer-only

wall” , and reaches 1.8×–1.9× for the top-priority application.

As expected, due to the lack of a priority-aware routing function, increasing the

number of bits (P) in the priority-tag has no noticeable impact on performance

with a Hoplite-B NoC. While Hoplite-Q does use the priority-tag for making rout-

ing decisions, there are no updates made to the packet priorities at runtime, and

hence, there is also no noticeable impact on performance by varying P , i.e. we can

remove the dynamic tag and choose P bits such that number of desired priority

classes is ≤ 2P . Hoplite-Q*, on the other hand, demonstrates a more noticeable

change in performance with varying P . At small P , the numerical range of the dy-

namic tag is not large enough, such that deflected packets from the lower-priority

classes get quickly promoted to higher priority classes, and limit the performance

advantage reserved for the top-priority application. At large P , the effect of the dy-

namic priority-updates is diminished, as it takes many more deflections for packets

to get promoted across different priority classes. This results in more low-priority

84

5

10

15

5
10

15

1.2

1.3

1.4

Bitw
idt

h
(P

)

Priority Classes (C)

Sp
ee

du
p

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

(a) Hoplite-B vs Hoplite

5

10

15

5
10

15

1.2

1.4

1.6

1.8
Bitw

idt
h

(P
)

Priority Classes (C)

Sp
ee

du
p

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(b) Hoplite-Q vs Hoplite

5

10

15

5
10

15

1.2

1.4

1.6

1.8

Bitw
idt

h
(P

)

Priority Classes (C)

Sp
ee

du
p

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(c) Hoplite-Q* vs Hoplite

Figure 4.12: Observed throughput improvements over 8×8 Hoplite NoC for
the application in the top-priority class, tested over varying number of priority

classes (C = 1→16), and total bitwidth of the priority-tag (P = 1→16).

85

packets getting stuck for long periods in the NoC, which takes up routing resources

(e.g. buffers) and, on the whole, throttles the performance of the NoC. The design

optimum seems to be P = 8 for the range of priority classes tested in our experi-

ments, and is likely to be larger as we scale up further beyond 16 priority classes.

When compared to Hoplite-B and Hoplite-Q, Hoplite-Q* also delivers the highest

peak throughput performance of > 1.9 × over Hoplite (when P = 8).

Answer: From empirical observations, P = 8 delivers the optimum throughput for

the top-priority application when up to 16 concurrent applications are deployed

on an 8x8 NoC overlay. This optimum is likely to shift slightly as number of

concurrent applications and/or size of overlay is increased.

4.5.5 Throughput vs average latency

Question: How is throughput and packet latency impacted across different priority

classes?

In this subsection, we look more closely at the effect of priority-aware routing on

packets from all priority classes. All results detailed in this subsection, unless

otherwise stated, are evaluated with the bp1600 BSP benchmark.

0

5

10

15

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12
C13

C14
C15

Priority Class

A
ve

ra
ge

 T
hr

ou
gh

pu
t

(P
ac

ke
ts

/C
yc

le
)

Hoplite Hoplite−B Hoplite−Q Hoplite−Q*

Figure 4.13: Average throughput of application in each priority class on 8×8
NoC, where C = 16 and P = 16.

86

Figure 4.13 shows the effect each router has on the throughput of applications

in each priority class (labeled C0 to C15, in increasing order of priority). As

expected, Hoplite and Hoplite-B NoCs produce a fairly uniform trend across all

priority classes since they do not have any priority-aware routing features. Hoplite-

Q produces a stark upward trend in the throughput performance from C0→C15.

Hoplite-Q* distributes this effect slightly to produce a more balanced throughput

performance across all priority bins (i.e. range of average throughput delivered to

least priority to highest priority applications is slightly lower in Hoplite-Q* than

Hoplite-Q). When comparing throughput performance between C0 and C15, there

is a ≈50% improvement in throughput for the top-priority application with the

Hoplite-Q/Hoplite-Q* routers.

This throughput performance is supported by Figure 4.14 as well, where we track

and compute the average packet latency suffered by packets in each priority class.

Here, the quality of service provided to top-priority packets (C15) can be almost

4× better than lowest-priority packets (C0). Note that an overwhelmingly large

proportion of the routing latency is due to the injection queue at the PE input,

and hence, the eventual throughput improvements across priority bins saturate at

smaller values.

0

1000

2000

3000

4000

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
C11

C12
C13

C14
C15

Priority Class

A
ve

ra
ge

 la
te

nc
y

(c
yc

le
s)

Hoplite Hoplite−B Hoplite−Q Hoplite−Q*

Figure 4.14: Average latency suffered by packets in each priority class for 8×8
NoC, where C= 16 and P = 16.

87

Figure 4.15 shows the throughput and packet-latency performance of the top-

priority application for different benchmarks. Each benchmark has its own com-

munication pattern, and the sizes vary from 2k – 18k edges (packets).

Average Latency (Cycles) Average Throughput (Packets/Cycle)

0 2000 4000 6000 8000 0 5 10 15 20

add20

bp1600

jpwh991

lns511

mcca

simucaddac

add20

bp1600

jpwh991

lns511

mcca

simucaddac

Hoplite Hoplite−B Hoplite−Q Hoplite−Q*

Figure 4.15: Average throughput and packet-latency of application packets in
the top-priority class across different BSP benchmarks for an 8×8 NoC, where

C = 16 and P = 8.

●
●

●

●

●

●

●

●
●

●

●

●

●

●

Average Latency (Cycles) Average Throughput (Packets/Cycle)

50 100 150 200 250 50 100 150 200 250

10

15

20

25

0

1000

2000

3000

Overlay Size

● Hoplite Hoplite−B Hoplite−Q Hoplite−Q*

Figure 4.16: Average throughput and packet-latency for the top-priority ap-
plication packets vs overlay size. C = 16, and P = 16.

88

Finally, in Figure 4.16, we observe that Hoplite-Q and Hoplite-Q* both scale

desirably as size of the overlay is increased.

Answer: Top-priority applications observe ≈50% throughput improvement, and

≈4× improved average packet latency. These trends continue desirably as overlay

size is increased, and apply to multiple benchmarks.

4.5.6 Token Dataflow

Question: How much impact does the Hoplite-Q* router have on the token dataflow

benchmarks evaluated on DaCO?

Dataflow graphs have a distinct critical path that should be prioritized for optimal

acceleration. In Chapter 3, we added criticality-aware scheduling inside each PE,

and in this section, we explore the benefits of criticality-aware routing in the NoC.

To isolate the effects of criticality-aware routing with Hoplite-Q*, we first use

the baseline in-order dataflow processor as the PE in our experiments, and turn

off clustering in the NoC topology (referred to as DF Baseline in Chapter 3).

This ensures that any benefits from priority-aware routing is solely due to the

features offered by the NoC router. We use priority and criticality interchangeably

in this section, i.e. each edge criticality in the dataflow graph is quantized to

an appropriate priority bin that Hoplite-Q/Hoplite-Q* utilizes to route dataflow

communication traffic in a criticality-aware manner.

Figure 4.17 shows the results when the bomhof3 benchmark is evaluated with

varying priority-tag bitwidth (P). Hoplite-B delivers the most significant through-

put improvement over baseline Hoplite router of about 13%. As P is increased,

Hoplite-Q and Hoplite-Q* are able to exploit the critical path in the dataflow

graph by routing traffic by criticality, which delivers a peak throughput of around

16% over Hoplite.

Figure 4.17 also suggests that P = 4 is sufficient for a dataflow graph of this size.

At low bitwidths, Hoplite-Q* performs poorer than Hoplite-Q. This is because,

at low bitwidths, the numerical range is small, and hence, the +1 added to the

priority-tag upon deflection is a significant boost to the priority of a packet. This

has a masking effect on the critical path, and hence, the performance from Hoplite-

Q* mimics that of Hoplite-B at low bitwidths.

89

● ● ● ● ● ● ● ● ●
13

14

15

16

2 4 6 8 10 12 14 16

Priority tag bitwidth (P)

%
 im

pr
ov

em
en

t i
n

su
st

ai
ne

d
th

ro
ug

hp
ut

 (
vs

 H
op

lit
e)

● Hoplite−B Hoplite−Q Hoplite−Q*

Figure 4.17: Average throughput improvement (percentage) vs Hoplite for
bomhof3 with varying P.

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
● ●

●

●
●

●

●

●

● ●
●

●

●
●

●

●

●

● ●

●
● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

bomhof1 bomhof2 bomhof3

0 64 128 192 256 64 128 192 256 64 128 192 256

4.0

4.5

5.0

5.5

2.4

2.8

3.2

3.6

0.5

1.0

1.5

2.0

System Size (Number of PEs)

S
us

ta
in

ed
 T

hr
ou

gh
pu

t
(P

ac
ke

ts
/C

yc
le

)

● ● ● ●Hoplite Hoplite−B Hoplite−Q Hoplite−Q*

Figure 4.18: Throughput performance of three representative dataflow graph
benchmarks under different NoC routers.

The number and distribution of nodes/edges along the critical path can result

in varying performance when evaluating different dataflow benchmarks. In this

90

subsection, we look at three representative dataflow graph benchmarks of increas-

ing sizes – bomhof1 (2k/2.4k nodes/edges), bomhof2 (36k/46k nodes/edges), and

bomhof3 (75k/90k nodes/edges). Figure 4.18 shows the throughput performance

of these three benchmarks when evaluated with different NoC routers and overlay

sizes (priority-tag bitwidth is set to 4, only applicable to Hoplite-Q/Hoplite-Q*).

As expected, speedup from Hoplite-B, Hoplite-Q, and Hoplite-Q* increases as size

of the input dataflow graph increases, since more traffic can take advantage of the

buffering and the priority-aware routing features.

s1423 s1488 s1494 hamm

bomhof1 bomhof2 bomhof3 s953
0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

A
ve

ra
ge

 in
je

ct
io

n
ra

te
 x

 1
0−2

(P
ac

ke
ts

/C
yc

le
/P

E
)

PE−Baseline + Hop PE−Baseline + HopQ* PE−DaCO + Hop DaCO

Figure 4.19: Observed average injection rate with four different overlay con-
figurations. PE-Baseline is the baseline in-order dataflow PE, PE-DaCO uses
LOD-based out-of-order scheduling, and DaCO is PE-DaCO with Hoplite-Q*.
Priority-tag bitwidth is set to 8 when Hoplite-Q* is used. The average injection

rate is computed across all cluster sizes (1, 2, 4, 8 and 16).

One way to quantify the role of the communication framework in the performance

of the overlay is by measuring the injection rate of packets into the network. A high

injection rate means that the communication network is relied on heavily, and thus

is likely to have a significant impact on overall performance. Figure 4.19 shows

how the average injection rate of each benchmark is affected by two main overlay

components: (1) the PE, which is either the older dataflow PE that does in-order

FIFO-based scheduling (PE-Baseline), or the proposed design in Chapter 3 that

introduces out-of-order scheduling (PE-DaCO), and (2) the NoC router, which is

either the baseline Hoplite router, or the priority-aware Hoplite-Q* router proposed

in this chapter.

91

Going from {PE-Baseline + Hop} to {PE-Baseline + HopQ*}, we observe a small

increase in injection rate, which shows that by routing packets in the network by

priority, we improve the execution order of the dataflow graphs slightly. This is

corroborated by the marginal improvements observed in Figure 4.18 (<10%).

There is a much more significant jump in injection rate when we switch PE-

Baseline with PE-DaCO in the {PE-DaCO + Hop} overlay. This change produces

much more favorable speedups of up to 2.6×, as shown earlier in the earlier chapter

(see Figure 3.9 in Section 3.6.3 in Chapter 3).

The sole impact of Hoplite-Q* drops even further to <1% when PE-DaCO is in

use. Hence, we can conclude that most of the advantages from criticality-aware

execution are derived from a better PE instead of the communication framework.

Interestingly, the injection rates for dataflow benchmarks across all configurations

are <10%, as only a subset of edges are active in the dataflow graph each cy-

cle. The baseline Hoplite router is capable of handling such low injection rates,

which unfortunately diminishes the importance of priority-aware routing offered

by Hoplite-Q*, and hence is another reason why we observe very little, if any,

improvement in performance when Hoplite-Q* is used with PE-DaCO.

Nevertheless, we believe Hoplite-Q* can be useful to DaCO in the future under

two conditions:

1. The benchmarks evaluated in this study so far are fairly small due to sim-

ulation tool limitations. As we scale to larger dataflow graphs, we expect

more communication traffic that stresses the importance of the NoC further

for token dataflow problems.

2. Hoplite-Q* is also likely to play an important role in enabling dynamic

dataflow execution on DaCO. In dynamic dataflow, multiple iterations of

the dataflow graph can be active in any given cycle. Priority-aware man-

agement of traffic across these multiple iterations is likely to deliver better

runtime performance, especially in latency-critical workloads (e.g. machine

learning).

Answer: Hoplite-Q* has limited impact on token dataflow execution with DaCO

(<1%) on the current set of benchmarks. This can be attributed to the lack of

communication traffic in the small benchmarks, since the low injection rate (<10%)

92

of packets into the network limit the impact Hoplite-Q* can potentially have on

overall performance.

4.6 Future Work

There are several improvements and research extensions that could be made to

the body of work in this chapter. We list three potential options that we hope to

try in the near future:

1. The arbitration cost inside Hoplite-Q/Hoplite-Q* is unusually large. One of

the goals in the future would be to revisit the arbitration strategy in order

to condense the design further. A more compact design would enable us to

achieve a better resource-balanced DaCO architecture.

2. Instead of a counter-based dynamic priority-aware routing strategy, a RNG-

based (random number generator) strategy could potentially give similar

priority-aware routing behaviour. Using a cheap hardware RNG, like a

linear-feedback shift register (LSFR), packet arbitration could be guided

by pseudo-random arbitration, where the probability of acquiring a desired

route is correlated to the static priority level of the packet. This has two

key advantages: (1) since only static priority bits are needed, the wiring

cost drops significantly with this approach, and (2) as size of priority-tag

increases, the cost of the counters start to burden the design, which would

not be the case with the LSFR-based design.1

3. One option that would improve the sustained throughput of the Hoplite-

Q* NoC significantly while raising some interesting research questions is to

change the unidirectional links between routers to bidirectional links. This

strategy essentially changes the topology from a torus to a mesh, which would

have several interesting impacts on the design. First of all, it would increase

the throughput of the NoC, simply due to the additional bandwidth available

from the extra wires. The deflection routing algorithm would also need to

change, especially the priority-aware arbitration function. Since packets can

be deflected to multiple output ports now, the priority-aware routing func-

tion would likely be richer and require more logic resources to implement.

1This clever little idea was suggested by Jan Gray at FCCM 2018.

93

If the associated overheads of wiring and logic are acceptable with this ap-

proach, the buffer could also be resized to achieve a new tradeoff balance

between throughput and resource utilization (likely that an extra buffer or

two would benefit greatly due to extra output ports at each router). How

these extra buffers are used in the priority-aware arbiter would also be an

interesting research question (e.g. buffer0 for only north/south + west/east

links, buffer1 for south/north + east/west links).

4.7 Conclusions

This chapter introduces Hoplite-Q*, a lightweight FPGA-friendly priority-aware

NoC router that is capable of exploiting priority information embedded in NoC

communication workloads. The proposed architecture in this chapter modifies

the lean Hoplite FPGA NoC router by adding a single buffer to enhance routing

choice. We also design the routing function to use the priority-tags in each packet

when determining packet paths. Our proposed design improves throughput of the

top-priority workload in a mixed-priority multi-application environment by 1.3–

1.8×, and worst-case latency by 1.5–3.9× for BSP applications, while increasing

FPGA area cost by 3.8×. Unfortunately, for token dataflow applications, the

impact of Hoplite-Q* is minimal due to low injection rates in dataflow systems. In

the future, experiments with larger benchmarks and new execution modes could

emphasize the importance of a Hoplite-Q* NoC further.

All in all, Hoplite-Q* augments the baseline Hoplite router with priority-aware

arbitration that is capable of delivering varying Quality-of-Service to applications

running in a shared environment. In the acceleration domain, the Hoplite-Q*

NoC complements the criticality-aware execution theme of DaCO, and delivers an

efficient dataflow coprocessor overlay for FPGAs. In the next chapter, we look at

dataflow-driven software optimizations that call upon hardware-software co-design

principles to deliver further improvements.

4.8 Publications

The body of work presented in this chapter has been published in the following

peer-reviewed conference proceedings:

94

Siddhartha, Nachiket Kapre, Hoplite-Q: Priority-Aware Routing in FPGA Over-

lay NoCs, International Symposium on Field Programmable Custom Computing

Machines, May 2018 (Full Paper)

Chapter 5

Software Optimizations

5.1 Introduction

Computation expressed as dataflow graphs expose all kinds of potential parallelism

in an algorithm. As seen in earlier chapters, hardware implementation of explicit

dataflow execution using the token dataflow paradigm helps to manage this extra

parallelism at low cost. Despite the custom dataflow hardware, dataflow graphs in

their raw form have sequential dependencies that can limit runtime performance on

DaCO. This chapter identifies three key areas of improvement that can be handled

by the compiler in order to boost runtime performance: (1) loop-unrolling, (2)

smart criticality-aware reassociation, and (3) fanout decomposition.

One of the most well-known methods for overcoming serialization bottlenecks and

exposing parallelism is loop-unrolling. Loop-unrolling exposes additional paral-

lelism and trades off extra work for faster evaluation. Modern compilers are capa-

ble of performing loop-unrolling optimizations (e.g. -funroll-loops in GCC), and

our goal is to achieve something similar in the context of dataflow graphs and the

underlying DaCO engine. In dataflow graphs, loop-unrolling can be implemented

simply by duplicating bottlenecked regions of the graph such that these copies can

all be evaluated in parallel. There is however a caveat: unrolling too much could

have a detrimental effect on the overall performance, as the excesss computation

and communication could result in undesirable effects such as congestion. This

can be likened to the side effects of unrolling large loops in C programs, where

a large increase in the number of unrolled instructions ends up slowing down the

overall evaluation [114]. In this chapter, we explore the limits of loop-unrolling for

95

96

the DaCO engine, and demonstrate how unrolling and reorganizing (reassociating)

the graph carefully at compile time can deliver runtime benefits.

Runtime performance can also be limited by worst case arrival times of fanins to

a long chain of associative nodes (e.g. summation of a series of terms represented

as a chain of add nodes). The näıve strategy would be to restructure these chains

into balanced binary trees to achieve a log2-reduction in the critical path of the

computation chain. However, the arrival times of each input into these chains can

vary significantly. There are potentially two factors behind this effect:

1. The dataflow graph structure simply creates this effect – e.g. both a constant

node and an arithmetic node at depth N feeding into another arithmetic node

will result in fanin arrival time to differ by at least N cycles.

2. Network effects like deflection and congestion lead to non-deterministic packet

latencies.

While it can be difficult, or simply impossible, to predict runtime network effects,

fortunately, the two factors listed above are loosely correlated. Intuitively, the

latency of a node at a deeper depth accummulates a larger number of prior network

delays, and hence, estimating arrival time of fanins using static analysis of the

graph at compile time delivers a sufficient approximation. This is corroborated

by observations in our experiments, where a small difference in expected arrival

time is exacerbated by network effects, thereby improving the benefits of doing

arrival-time aware graph structuring even further. To implement this, we design

a graph reassociation strategy inspired from Huffman encoding, and demonstrate

its benefits over the näıve reassociation methods.

Finally, dataflow graphs can also be plagued by serialization bottlenecks due to

nodes with a large number of outgoing edges. This is mostly due to the underlying

hardware architecture in the packet generator (see Chapter 3.4.1.4), where packets

on all outgoing edges (fanouts) of a node are constructed and injected into the net-

work serially one at a time. Often, these large fanout nodes also lie on the critical

path as their result is required by a large number of nodes downstream. While

modification to the underlying hardware to support parallel fanout evaluation/in-

jection is potentially a viable strategy, we opt to keep the lightweight processor

design and focus on software-based graph transformation optimizations instead.

Our solution is to decompose these high fanout nodes into multiple balanced fanout

97

trees that can then be placed onto different processors. This optimization can be

likened to the fanout tree construction carried out by the EDGE compiler [46],

since each instruction is only allowed up to two target instructions on their ar-

chitecture. Our optimizer instead can operate with user-supplied thresholds and

fanout-arity hyperparameters. Nodes in these fanout trees can then be placed on

different processors, such that multiple processors in the network can share the

workload of processing these large number of fanouts in parallel.

The remainder of this chapter is organized as follows: Section 5.2 gives a brief

background overview on the benchmarks used in this chapter, and also highlights

some related work. Section 5.3 introduces our first loop-unrolling optimization,

which we refer to as recursive substitution and reassociation. Section 5.4 goes into

detail on the design of a Huffman-inspired criticality-aware reassociation scheme

that improves upon the näıve reassociation in Section 5.3. In Section 5.5, we

introduce our final compiler optimization on fanout decomposition. Finally, Sec-

tions 5.6 and 5.7 contain details on the experimental setup and discussions on the

results respectively, with final concluding remarks in Section 5.9.

5.2 Background

5.2.1 Sparse Matrix Factorization

Numerical problems in computing often require solutions to systems of linear equa-

tions, represented as A~x = ~b. To solve these equations, we can use either direct

or indirect algorithms, but we focus on direct LU factorization in this chapter.

We consider factorization in scenarios that permit upfront, one-off static analysis

of the computation to extract and exploit parallelism (e.g. KLU solver [30] for

circuit simulation). The underlying parallelization technique also extends to other

numerical routines operating on sparse matrices with irregular dataflow structure.

The KLU solver performs a one-time spatial reordering of rows and columns in

the matrix which makes it possible for the non-zero structure in the intermediate

matrices to remain static/fixed for subsequent iterations. This feature allows us

to pre-allocate and optimize the data structures at the start of an iterative sim-

ulation phase where thousands of factorizations may subsequently be performed.

We adapt the solver to expose raw dataflow parallelism in the resulting unrolled

compute graph for a token dataflow implementation.

98

Algorithm 1: Gilbert-Peierls
Data: sparse matrix A
Result: factors L & U

1 L = I;
2 for i=1:N do
3 b = A(: , i);
4 x = L\b;
5 U(1:i , i) = x(1:i);
6 L(i+1:N , i) = x(i+1:N) / U(i , i);

7 end

Algorithm 2: Front-Solve Loop
Data: kth column from sparse matrix A, partially computed factor L upto column

k-1
Result: kth column for factor L and U

1 for i=1:k-1 do
2 for j=i+1:N do
3 if (x(i)!=0 and L(j,i)!=0) then
4 x(j) = b(j) - L(j,i)*x(i)
5 end

6 end

7 end

To understand the parallelization, we investigate the pseudocode of the Gilbert-

Peierls (GP) algorithm, shown in Algorithm 1. The GP algorithm is at the heart

of the LU decomposition routine in the KLU solver. Runtime is dominated by

the repeated call to the front-solve (FS) routine (line 4) in every iteration of the

for loop over matrix columns. In the FS algorithm, shown in Algorithm 2, the

factored column of L and U matrices is generated in-place by iteratively process-

ing the k-th column of A and using the partial entries in the L and U matrices.

From the pseudo-code in Listing 1 and 2 it may appear that the matrix solve

computation is inherently sequential. However, if we unroll those loops in both

algorithms, we can expose the underlying dataflow parallelism in the sparse oper-

ations. In the parallel evaluation, we schedule operations purely on the basis of

their dataflow dependencies rather than the artificial ordering imposed by sequen-

tial loop iterators. The sparsity and natural clustering of non-zeros in matrices

plays to our advantage, as the unrolling generates independent subtrees with little

or no communication with each other.

99

5.3 Recursive Substitution (Loop-Unrolling)

5.3.1 Motivating Example




1 0 0 0
L2,1 1 0 0
L3,1 L3,2 1 0
L4,1 L4,2 L4,3 1







x1

x2

x3

x4


 =




b1
b2
b3
b4




Figure 5.1: Toy 4x4 dense matrix example of a front-solve, where the matrix
L and vector ~b are known constants, and we are solving for the vector ~x

Consider the toy 4x4 dense matrix front-solve example in Figure 5.1. The front-

solve algorithm is naturally sequential, as it solves for ~x one row at a time (see

Listing 2). Figure 5.2 shows the dataflow graph that represents the front-solve

computation for the toy example. Note how x4 requires the results of x1, x2, and

x3 to be computed before its own result can be evaluated.

One way to break these sequential dependencies between x1 to x4 is to unroll the

for-loops in Listing 2. This essentially creates four independent dataflow graphs

that can be evaluated in parallel to compute x1 to x4 respectively. We refer to

this as recursive substitution.

5.3.2 Recursive Substitution

Table 5.1: Various optimizations applied to an expression for variable x4 in
the L~x = ~b Front-Solve computation (Figure 5.1)

Arithmetic Expression for x4 Work Latency

Original Expression
b4 − L43x3 − L42x2 − L41x1 6×, 6+ 8

Fully Substituted Expression
b4 − L43b3 + L43L32b2 − L43L32L21b1 + L43L31b1− 12×, 7+ 5
L42b2 + L42L21b1 − L41b1

Depth-Limited Substitution Expression
b4 − L43b3 + L43L32x2 + L43L31x1 − L42x2 − L41x1 7×, 5+ 5

Recursive substitution is the process of replicating datapaths in a computation in

a way that breaks computational dependencies, thereby allowing multiple compu-

tations to be carried out in parallel. This is a work-parallelism tradeoff, where

100

L32

L31

−

−

−

−−

−

x1

x3

x2

x4

L42

L43

L41L21

b2b3

b1

b4

∗ ∗ ∗

∗

∗

∗

Figure 5.2: DAG for solving x1, x2, x3, and x4 in the toy 4x4 example

we increase the amount of computational work in order to gain runtime benefits

from parallel execution. In sparse matrix factorization, this recursive substitution

step can be applied to the front-solve in the Gilbert-Peierls algorithm (Line 4 of

Algorithm 2). By doing recursive substitution, we rewrite the expressions for each

xj purely in terms of the vector ~b and partial matrix Lij. We explain this in Ta-

ble 5.1, where we first note the equations required to resolve elements in x4 have a

sequential order. If we recursively substitute the solutions for earlier x (x1, x2 and

x3) in the downstream expression for x4, we can rewrite the equation such that it

can be resolved independently without sequential dependencies.

101

Unfortunately, a complete recursive substitution for the entire computation gives

us an exponentially larger compute graph for the LU factorization, with mostly re-

dundant computations. Hence, our challenge is to create opportunities for asymp-

totic reductions while controlling growth in redundant work. While sparse ma-

trices are expected to return a more manageable growth in work when recursive

substitution is applied, unfortunately, however, we routinely observed a > 30×
increase in duplicate work. We address this challenge by doing a depth-limited

substitution instead. We show this by rewriting x4 purely in terms of x1 and x2

in Table 5.1 for a depth = 2 case. By avoiding total recursive substitution, we

reduce the amount of redundant work generated but accept a smaller saving in the

reduction of the critical path of the graph. When implementing factorization on

real-world dataflow hardware with capacity limits, this is an important engineering

tradeoff that makes the idea feasible.

5.3.3 Reassociation

Substitution by itself decouples the computation and removes unnecessary depen-

dencies, but it does not reduce the critical chain of operations. If we restructure

the long O(N) multiply and add chains generated from substitution into dlog(N)e
trees, we can obtain an asymptotic reduction in critical latency. We quantify the

improvements for the 4x4 example in Row 2 and 3 of Table 5.1 and associated

dataflow graphs in Figure 5.3b and 5.3a. In Figure 5.4, we show the operation

count and critical path latency trends for a single front-solve iteration in bomhof2

benchmark when substituted to varying depths and subsequently reassociated.

For most benchmarks, we observe that a substitution depth of 8 generates a good

balance between additional work and reduction in critical path delays after reasso-

ciation. Note that reassociation results in reordering of the arithmetic operators,

which could potentially affect the numerical stability of the algorithm due to finite-

precision rounding effects. We discuss this in greater detail later in Section 5.7.4.

In Figure 5.5, we show a preliminary analysis of the utility of these software

optimizations on dataflow properties of the bomhof2 matrix. We plot the number

of nodes in the graph at a given level (work) against latency of that node from the

input (depth). Here, total depth (critical latency) is a measure of performance;

smaller values indicate faster completion with parallel processing. A critical chain

of operations that defines this maximum depth is called the critical path in the

102

L32L31

∗

+

++

x4

L42 L43L41 L21 b2 b3b1

b4∗∗ ∗∗ ∗∗

−−−−

(a) Without Depth Limits

∗ ∗ ∗ ∗ ∗

+

L41

−−

−

x1 L32L31 x2

x4

b3 L42

−

b4

L43

(b) Depth-Limited
(depth = 2)

Figure 5.3: Substitution and näıve reassociation on x4 in the toy 4x4 matrix
example in Figure 5.1

computation. In the example shown, most of the parallelism is at the head of the

graph (depth = 0). Across our benchmark set, we typically observed a similar

phenomenon where we can issue as many as 10% of the operations in the first few

steps of the graph.

For the example shown in Figure 5.5, we observe that we have a long sequential tail

(depth≈75) that defeats parallel scaling. Thus overall performance is ultimately

limited by the runtime spent evaluating this long tail as we delve deeper into the

dataflow graph. Even when mapped to ideal hardware with no communication de-

lays or scheduling bottlenecks, the resulting speedups will be limited by Amdahl’s

103

Work Increase Latency Reduction

●

●

●

● ● ●

●

●

● ● ● ●

1

1.5

2 4 8 16 32 64 2 4 8 16 32 64
Substitution Depth

R
el

at
iv

e
Va

lu
e

Figure 5.4: Work Parallelism Tradeoffs vary with substitution depth for
bomhof2 benchmark’s dataflow graph. Large depths increase work excessively

without reducing latency sufficiently.

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70 80

N
u
m

b
e
r

o
f
n
o
d
e
s

Depth of the Graph

With Substitution
No Substitution

Figure 5.5: Work-Parallelism Tradeoff in (bomhof2) after applying substitu-
tion and reassociation

Law. This observation forms the basis of the software transformations in this chap-

ter that coax additional parallelism from the stubborn sparse LU dataflow graphs.

104

When we apply our optimizations, we generate substantially more work (≈10×),

but achieve critically important reduction in the depth of the graph (depth = 49)

which reduces the critical latency in the computation (by 1.5×). This optimiza-

tion is well-suited for architectures where independent floating-point operators are

abundantly available and are tightly-coupled with low-latency interconnect to sup-

port irregular dependencies unlike multi-cores and GPU architectures with rigid

shared-memory communication paradigms.

5.4 Criticality-Aware Reassociation

5.4.1 Motivating Example

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 20 40 60 80 100 120 140 160 180

F
re

q
u
e
n
c
y

Arrival-Time Difference

Figure 5.6: Arrival time variation at arithmetic operator inputs for bomhof2

benchmark running on a 144-PE dataflow FPGA architecture. Latest arriving
input at cycle ≈ 180 (difficult to see in plot)

Even after substitution and reassociation, poor performance is still possible due to

the oblivious processing of high-fanin and high-fanout nodes without awareness of

arrival time of the inputs. We could trivially decompose the high fanin nodes into

balanced reduction trees using the associative property. Instead, we propose a re-

ordering of operations in a manner that enhances parallelism. As the original order

of floating-point operations has already been changed by substitution, this extra

reassociation is considered with a focus on parallel performance. For balanced

105

reduction trees, we are assuming a uniform input arrival time. In hardware, we

note significant gaps in arrival times for these fanin tree, as high as 180 cycles in

some instances for the 144-PE overlay design (see Figure 5.6). Thus, our goal is to

build associative fanin trees that account for this arrival time variation to improve

completion times in these subtrees.

5.4.2 Huffman-based criticality-aware repacking

x0 x2 x3 x4 x1

0 200 0

Sorted Priority-Queue Directed Acyclic Graph

Step 0:

Step 1: x3 x4 x1+ +

x0 x20 210

Step 2: +

x0 x21 21
x1+ + +

x3 x4

Step 3:
2 2
x1 + +

x0 x2

+

x3 x4

+

Step 4:
+

x0 x2

x1

+

x3 x4

+
+

⌃
i = 0

xi

4

+

x0 x1 x2 x3 x4

⌃
i = 0

xi
4

0 2 0 0 0

+

+

+

+

x0 x1

x2

x3 x4

⌃
i = 0

xi
4

0 2 0

0

0

3

4

1

5

Trivial
Reassociation

Huffman-inspired repackingExample

Cycles = 5 Cycles = 3

Figure 5.7: (1) Top-left: Compact DAG representation of a chain of add oper-
ations (top-left) representing a summation of five nodes. All nodes are available
at cycle = 0, except x1, which is delayed by 2 cycles. (2) Bottom-left: Trivial
reassociation of add chain into balanced binary tree that takes 5 cycles to evalu-
ate (assuming add instruction has a 1 cycle latency). (3) Right: Visualization of
the 4-step process to reassociate smartly with a Huffman-inspired method that
uses a sorted priority-queue to iteratively build the dataflow graph. Dataflow

graph can be evaluated in 3 cycles now.

To implement criticality-aware repacking of computation represented in a dataflow

graph, we draw inspiration from the Huffman-encoding algorithm [57] in a manner

similar to the logic synthesis transformations presented in [52].

106

Algorithm 3: Huffman-styled fanin reassociation
Data: Priority Queue V , Input fanins f1, f2, ..., fn labeled with ASAP timing ti
Result: Timing-optimized reduction tree

1 foreach fi in f1,f2,f3. . . ,fn do
2 ti = fi.getASAP();
3 fi.setHuffmanTime(ti);
4 V .push(fi);

5 end
6 while V .size() != 1 do
7 inp1 = V .pop();
8 inp2 = V .pop();
9 op node = createOperator();

10 op node.connectInputs(inp1,inp2);
11 t1 = inp1.getHuffmanTime();
12 t2 = inp2.getHuffmanTime();
13 t3 = MAX(t1, t2) + 1;
14 op node.setHuffmanTime(t3);
15 V .push(op node);

16 end

In Huffman encoding, a tree is constructed based on the probability of occurrence

of each input symbol being encoded. While constructing the tree, the symbol prob-

abilities are accumulated incrementally and each stage has balanced probabilities.

We adapt this algorithm to use arrival times instead of symbol probability when

constructing the fanin tree for a high-fanin node (i.e. a chain of 2-input associa-

tive operations, e.g. add/multiply). We compute the arrival times based purely

in the static structure of the dataflow graph through a simple as-soon-as-possible

(ASAP) analysis. This is a lower-bound estimate of the time when the node will

be available for downstream computations as we do not model network congestion

costs and queuing of ready nodes in the PEs. In Figure 5.7, we show a contrived

example of arity-2 fanin tree construction based on this adapted Huffman scheme.

Algorithm 3 shows the pseudo-code for implementing this repacking scheme. This

code has an asymptotic complexity of N×log(N) where N≈100s, thereby enabling

rapid execution.

107

 1

 10

 100

 1000

 10000

 2 10 100 200

F
re

q
u
e
n
c
y

Number of fanin/fanouts

Fanout
Multiply Fanin

Add Fanin

Figure 5.8: Fanin/Fanout Distribution of the bomhof2 benchmark after sub-
stitution transformation.

5.5 Fanout Decomposition

5.5.1 Motivating Example

Fanout edges from a node represent dependencies where the result of a floating-

point operation is required as input to multiple other operations. This result is ex-

plicitly communicated over the packet-switched network in the dataflow hardware.

Unlike shared-memory programming, where the shared variables are snooped or

explicitly requested from a shared address space, dataflow processing employs the

message-passing style of communicating dependencies. Typically, within a PE,

fanout edges emerging from a node are processed in sequence one at a time. This

results in serialization bottlenecks at nodes with large fanout counts as shown in

Figure 5.8 for the bomhof2 benchmark. We need to reduce this overhead by (1)

distributing fanout serialization across multiple PEs, as well as (2) prioritizing

evaluation of edges that must travel further.

5.5.2 Implementation

To implement fanout decomposition, we first define two control parameters: thresh-

old (ft) and arity (fa). If the fanout size of a node in our input dataflow graph is

108

+

p5p1 p6p4p3p2

(a) Undecomposed

+

p1p6

cpy

p4p3

cpy

cpycpy

p5p2

(b) Decomposition fa = 2, ft = 4

Figure 5.9: Fanout Decomposition Example (cpy is a copy node)

greater than ft, we perform fanout decomposition on that node. The decomposi-

tion is carried out such that arity of decomposed fanout tree is not greater than

fa, i.e. each node in the decomposed tree has no more than fa fanouts. Under

these constraints, we decompose the fanouts in the most balanced way possible,

such that the fanouts are distributed across the new copy nodes (annotated as

“cpy”-nodes in Figure 5.9b) as evenly as possible. Both ft and fa are tuneable

parameters exposed to the programmer by our compiler.

5.6 Methodology

In this section, we describe our hardware design and software setup along with

our experimental flow.

5.6.1 Old Hardware Design

We used the Xilinx Virtex-6 LX760 FPGA for our hardware experiments in this

chapter. The hardware uses operators generated from Xilinx LogiCORE IP Floating-

Point operators v7.0 [135] for double-precision arithmetic. We write VHDL con-

trollers that manage the dataflow trigger logic and memory access logic to support

109

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

MULT
PE

Graph

ADD
PE

Graph

DIV
PE

Figure 5.10: Heterogenous 2D overlay architecture used in this chapter. Note:
We decouple Add/Multiply/Division PE, due to high DSP resource utilization

to implement each arithmetic operator.

fully-pipelined high-throughput evaluation of the dataflow nodes. We employ a

heterogeneous overlay topology as shown in Figure 5.10. We also developed our

own VHDL NoC switch designs that implemented Dimension Ordered Routing

(DOR) to support deadlock-free message delivery on the mesh NoC. We pipelined

our design to achieve a clock frequency of 250 MHz and calibrate the NoC pipelines

to a depth of 2 to meet this timing requirement. The PEs in the overlay are sim-

ilar to the PE-Baseline in Chapter 3 – i.e. they are FIFO-based processors that

evaluate active nodes in arrival-order. We compiled FPGA hardware using Xilinx

Vivado 2013.4 CAD tool running on a 64b Ubuntu Linux platform. We use Xilinx

XPower to estimate power consumption of the FPGA platform at a 15% activity

rate on the FFs and LUTs. On the chosen FPGA platform, we are able to ac-

commodate a 12x12 NoC design (i.e. 144 PEs) and report a power utilization of

30–40W. For simplicity, we restrict our NoC topology sizes during design space

exploration to use square configurations (e.g. 1x1, 2x2, 3x3, . . .). We show the re-

source utilization and pipeline depths of the various building blocks of our system

110

in Table 5.2. For our usage scenario, we need to generate the FPGA bitstream for

the dataflow architecture only once across all input matrices. Each sparse matrix

will have a unique non-zero structure and a resulting unique dataflow graph that

is encoded as a memory image. These images are the only variable component of

the hardware design and are loaded once at the start of the factorization. There

is no need to reprogram the entire FPGA for each input matrix.

Table 5.2: Hardware Resource Utilization of the FPGA design

Block Area (LUTs) DSPs Latency

Multiply PE 1107 11 10
Addition PE 1875 0 8
Division PE 5450 0 55

Switch Box 2254 0 5

5.6.2 Software Setup

We develop a dataflow compiler (pre-processor) that implements all the software

optimizations described in Sections 5.3, 5.4, 5.5 as a series of passes. We interface

the KLU sparse matrix solver with our compilation framework to enable capturing

the dataflow graphs as inputs to our flow. The compiler optimizes the graph

in multiple stages, applying the various optimization passes in sequence. The

recursive substitution optimization is applied first to expose parallelism followed by

reassociation (trivial or Huffman-inspired) that only affect the graph node fanins.

Once the fanin trees are constructed, we decompose the fanout nodes next. We

partition and place our dataflow graphs with MLPart-5.2.14 [92] to allow high-

quality distribution of graphs in a manner the exploits communication locality.

These pre-processing optimizations are one-time compilation transformations that

are done in the same spirit as AMD [6] (approximate minimum degree) re-ordering

of the matrices.

5.6.3 Experiments

For our performance evaluation, we compare runtime of the Xilinx Virtex-6 LX760

(40 nm) against a software implementation of KLU solver running on the Intel

111

Xeon 2407 CPU (32 nm) as our baseline. We report speedups against this base-

line, as well as separately evaluate speedups for the various dataflow optimization

passes applied cumulatively. We measured the peak power utilization of the In-

tel Xeon 2407 system at around ≈150W using the Energenie Power meter, which

is roughly 3–4× higher than the FPGA platform. We develop a cycle-accurate

simulator of our hardware design to enable us to prototype and verify our design

performance much more quickly and efficiently across a large design space of tune-

able parameters. This is essential to rapidly explore various design configurations

as the FPGA CAD toolflow takes hours of compile time for even the smallest de-

sign change. In our experiments, we routinely observed that a substitution depth

of 4 produces dataflow graphs with a desirable work-parallelism balance. When

doing fanout decomposition experiments, we observed that the fanout threshold

(ft) of 16 and a decomposed tree arity (ft) of 4 yields best results.

We use a range of sparse matrix benchmarks from the UFL Sparse Matrix repos-

itory [29] extracted from circuit simulations. We represent the graph properties

such as number of floating-point operations (nodes), dependencies (edges), critical

path latencies (depth of the graph) and matrix sparsity in Table 5.3. The bench-

mark sizes range from thousands of nodes up to millions of nodes with similar

variations in critical latencies. These matrix factorizations from the circuit sim-

ulation domain can run for hours, if not days, due to the thousands/millions of

SPICE iterations to reach convergence. The software pre-processing time imposed

by our dataflow optimizations at the start of the run are roughly the cost of a few

iterations and are easily amortized across the millions of iterative factorizations.

Table 5.3: Benchmark Properties

Benchmark Sparsity Nodes Edges Critical Latency

s526n 0.2% 544k 669k 27k
s526 0.2% 550k 674k 27k
s832 0.2% 938k 1.2m 47k
s953 0.2% 4.0m 5.3m 76k
s1196 0.1% 5.9m 7.5m 142k
bomhof1 0.5% 6.2m 8.8m 22k
bomhof2 0.1% 6.8m 9.4m 48k
simucad 0.3% 12.8m 17.5m 77k
s1238 0.1% 12.8m 16.8m 200k

112

5.7 Results

In this section, we quantify runtime performance benefits of our hardware-accelerated

sparse matrix solver and explain the underlying effects that contribute to speedup.

We also consider what-if design scenarios that can help extend the speedups be-

yond the reported speedups. Finally, we analyze the error properties of the ~b− A~x

residuals.

5.7.1 Notation

To simplify the presentation of results, we use the following terms to refer to

different optimization passes:

Dataflow Unrolling : This is the simplest form of optimization, where the com-

putation is unrolled to be expressed as a dataflow graph. Note that no dataflow

graph restructuring or further graph-related optimizations have been carried out

in this step. This strategy has been introduced before in previous works involv-

ing token dataflow architectures (e.g. [69]), and is capable of delivering significant

speedups on its own.

Substitution + Reassociation : This is the recursive substitution and näıve re-

association as detailed in Section 5.3 above.

Criticality-Aware Repacking : We bundle the two graph criticality-related op-

timizations discussed in Sections 5.4 (Huffman-inspired repacking) and 5.5 (fanout

decomposition) as a one-off graph repacking optimization pass.

5.7.2 Speedups over CPU

Question: How does performance scale as each optimization pass is applied suc-

cessively one at a time on top of each other?

We summarize the speedup contributions from the different optimizations across

our benchmark set in Figure 5.11, where each optimization is applied in order on

top of each other:

• Optimization pass 0 : Dataflow Unrolling

113

0

1

2

3

4

s5
26

n

s5
26

s8
32

s9
53

s1
19

6

bo
m

ho
f1

bo
m

ho
f2

si
m

uc
ad

s1
23

8

Benchmarks

S
pe

ed
up

 o
ve

r
C

P
U

Dataflow Unrolling

Substitution+Reassociation

Criticality−Aware Repacking

Figure 5.11: Overall speedup when different optimizations were applied suc-
cessively on top of each other. Comparison is against a sequential Intel Xeon
2407 CPU implementation and a 144 PE LX760 FPGA implementation across

various matrices.

• Optimization pass 1 : Dataflow Unrolling + Recursive Substitution + Triv-

ial/Näıve Reassociation

• Optimization pass 2 : Dataflow Unrolling + Recursive Substitution + Triv-

ial/Näıve Reassociation + Criticality-Aware Repacking

We observe an overall speedup of 1.9–4.6× over the sparse matrix KLU solver

CPU implementation when all dataflow optimizations are activated. The different

benchmarks report differing speedups due to a variety of factors such as distribu-

tion of chain lengths, sparsity of the bottleneck columns and connectivity in the

graph.

The large benchmarks report > 2× overall speedups when considering all optimiza-

tions. Of particular interest is the simucad benchmark which offered practically

no speedups with simple dataflow unrolling. This was due to the increased density

of non-zeroes in the last few columns of L and U resulting in excessively sequential

evaluation. We were able to overcome this sequential operation using the substi-

tution, reassociation and repacking optimization to deliver > 2× speedup for this

114

stubborn benchmark. The bomhof2 benchmark offers the highest speedups of 4.6×
due to the sparsity structure of the underling matrix. However, for the smallest

3 benchmarks, we observe a slowdown in performance after performing a substi-

tution + reassociation transformation but recovered speedups after applying all

transformations (see s526, s526n, and s832 in Figure 5.11). These small bench-

mark graphs have a relatively shorter critical path latency, which suffer longer

communication delays (See Section 5.7.6 for ideas for alleviating this limit for

small matrices).

Answer: For sufficiently large benchmarks, each optimization pass adds cumulative

speedup over the baseline CPU implementation to deliver peak improvements from

1.9–4.6×. For smaller benchmarks, creating extra redundant work via substitution

and reassociation does not prove worthwhile, but the criticality-aware repacking

optimization pass helps to recover some of the lost performance.

5.7.3 Resource Scaling

Question: How does performance scale as number of processors (i.e. dedicated

resources) with different optimization strategies?

In Figure 5.12, we highlight the performance scaling trends for the bomhof2 matrix

as we increase the number of PEs in our design. Our dataflow optimizations are

able to produce a better work-parallelism tradeoff at larger system sizes > 10 PEs,

which delivers a desired speedup scaling trend that can continue down for future

systems. We discussed the substitution phenomenon that causes this effect earlier

in Section 5.3.2 and Figure 5.5. While the FPGA selected limits largest system size

to 144 PEs, we note that our parallelism enhancing transformations are continuing

to scale even up to the largest system size. Modern FPGAs are 2–3× larger and

can easily accomodate bigger 2D NoCs delivering additional improvements beyond

those reported in this chapter.

Answer: At small system sizes, dataflow unrolling delivers the best benefits, but

as system sizes increase, it becomes increasingly beneficial to apply higher-order

dataflow graph optimizations such as recursive substitution, reassociation, and

criticality-aware repacking.

115

●

●
●

●
● ● ● ● ● ●●●

2

4

8

2 10 64 100144
PEs

C
yc

le
s

(m
ill

io
ns

)
● Dataflow Unrolling

Substitution+Reassociation
Criticality−Aware Repacking

Figure 5.12: Performance Scaling trends for bomhof2 benchmark. Work-
Parallelism tradeoffs are visible at crossover systems size of ≈10 PEs.

5.7.4 Empirical Error Analysis

Question: Are these optimizations numerically safe?

−30

−20

−10

0

s5
26

n

s5
26

s8
32

s9
53

s1
19

6

bo
m

ho
f1

bo
m

ho
f2

si
m

uc
ad

s1
23

8

Benchmark Matrix

lo
g(

||b
−

A
x|

|)

Sequential CPU Dataflow Unrolling Substitution+Reassociation Criticality−Aware Repacking

Figure 5.13: Impact of parallelizing dataflow optimizations on the residuals
of ~b−A~x of the factored matrix under different optimization groups

116

We also compute the residual ~b−A~x of our transformed graphs and compare with

the residual of the original sequential evaluation as shown in Figure 5.13. For this

experiment, we obtain the~b from an instance of the factorization evaluation within

the SPICE simulation. We observe changes to the resulting residuals as large as

10−10 (e.g. bomhof2) or < 10−20 (e.g. simucad) when applying all optimizations.

For many numericallly-sensitive applications such as SPICE, these residues are

still small enough to deliver satisfactory convergence. For cases where changes to

residual error (and numerical order) are not tolerable, the user can restrict our

optimizations to only support dataflow unrolling and still recover ≈2× speedup.

Answer: In the context of SPICE benchmarks, yes, they are. Nevertheless, the user

can control the depth of dataflow unrolling and recursive substitution to control this

effect, if tighter bounds are required.

5.7.5 Floating-Point Efficiency

Question: What peak floating-point efficiency can be delivered on these benchmarks

with these varying software optimizations?

0.00

0.25

0.50

0.75

Intel Xeon
 2407

Virtex−6
 LX760

 Dataflow Unroll

Virtex−6
 LX760

 Subst+Reassoc

Virtex−6
 LX760

 Crit. Repack

T
hr

ou
gh

pu
t (

G
F

LO
P

s)

Figure 5.14: GFLOPs utilization of different optimizations implemented on
CPU and various FPGAs. Error bars represent range of measured GFLOPs

across all benchmarks.

Sparse problems are slow and difficult to accelerate due to their irregular memory

access patterns. This is depicted in Figure 5.14 for the bomhof2 benchmark, where

117

we found that the Intel Xeon 2407 CPU is able to achieve only 0.06 GFLOPs out

of a theoretical sequential peak of 8.8 GFLOPs (assuming 2.2 GHz operation ×
2-lane double-precision SSE instruction × FMA – 1 Mult + 1 Add × 1 core).

Using FPGA accelerators, we are able to push the throughput up to 0.7 GFLOPs,

out of a theoretical peak of 36 GFLOPs. This beats the low utilization of the

CPU by 11×. It is worth noting that the speedup reported in Figure 5.11 for

bomhof2 is only 4.6× even though the GFLOPs rate is higher. This is due to the

extra floating-point operations generated from the work-parallelism tradeoffs of

the dataflow optimizations. Ultimately, the floating-point efficiency, even on the

FPGA, is poor. A combination of time spent in the communication network, and

the initial loading time of the constants contributes to this low utilization. In the

rest of this section, we discuss extensions that could push speedups further.

Answer: The FPGA implementation is able to deliver an order of magnitude better

GFLOP/s efficiency over an Intel Xeon CPU. This is, however, still far from

the achievable peak, and there is still plenty of room at the bottom to optimize

performance for these sparse benchmarks. DaCO on Arria 10, as seen in Chapter 3

takes this a step further by delivering up to 4.0 GFLOP/s (≈6× improvement over

reported figures in this chapter).

5.7.6 Case for Homogeneous Design

Question: Is there any way to address the performance gap for smaller matrices?

For the smaller benchmarks – s526, s526n & s832 – shown in Figure 5.11, we

observed a disappointing slowdown in performance when considering recursive

substitution and reassociation optimizations. We hypothesize that smaller graphs

would prefer more tightly-coupled processors on smaller systems, such that the

communication penalty created from substitution is mitigated. We support this

hypothesis with an experiment using a different homogeneous NoC design that con-

sists of PEs that contain both addition and multiplication hardware primitives. As

expected, this comes at a cost of reduced system size. On the same Virtex-6 LX760

FPGA, we can accommodate an 8x8 homogeneous PE NoC design instead of the

12x12 heterogeneous system. We show the recovered and improved performance of

the same 3 benchmarks in Figure 5.15 when implemented on the homogeneous de-

sign. This homogeneous design, however, limits achievable speedups for the larger

benchmarks (not shown) and should only be used for smaller matrices. Current

118

0

1

2

3

s526n s526 s832
Benchmarks

S
pe

ed
up

 o
ve

r
C

P
U

Dataflow Unrolling

Substitution+Reassociation

Criticality−Aware Repacking

Sub.+Reassoc. (Homogeneous)

Criticality−Aware Repacking
(Homogeneous)

Figure 5.15: Performance recovery for small matrix benchmarks when using
homogeneous designs with fused MAC units

preliminary results from our experiments suggest graphs with more than a million

nodes should be evaluated on heterogeneous designs.

Answer: Smaller matrices, due to shorter critical paths, prefer tightly-coupled over-

lay architectures to minimize communication delays. By using a homogeneous PE

overlay architecture, we can ensure that these small benchmarks do not lose out

on any performance gains from these software optimizations.

5.7.7 Case for Selective Optimization

Question: Can we fine-tune the granularity at which each of these optimization

passes are applied? Does that give improved performance?

Our current implementation of optimization applies the parallelization transfor-

mations uniformly over the entire dataflow graph. We hypothesize that there will

be portions within the graph that have short operation chains and small sized

subgraphs that will not benefit from our optimization at all. To evaluate this

hypothesis, we developed a heuristic to only apply these transformation to sub-

trees that have chains exceeding a certain threshold. As shown in Figure 5.16, we

can enhance the performance of the bomhof2 matrix by an additional 8% at 144

PEs – some benchmarks produce dataflow graphs with greater degree of variance

in parallelization opportunities, thus allowing them to benefit more from such

a strategy. An example is the bomhof1 benchmark, whose performance can be

119

●

●

●
●

●
● ● ● ● ●●●

2

4

2 10 64 100144
PEs

C
yc

le
s

(m
ill

io
ns

)
● Dataflow Unrolling

Substitution+Reassociation
Criticality−Aware Repacking

Figure 5.16: Effect of Selective optimization on the bomhof2 benchmark PE
scaling trends

scaled by an additional 36% when evaluated with an optimization selection strat-

egy. We also observe a uniformly superior scaling graph that is always better than

the design with pure dataflow unrolling. This shows how we can overcome the

work-parallelism bottleneck at even smaller system sizes. Presently, we select the

threshold for enabling parallelizing dataflow transformations using trial and error,

and seek to develop automated machine learning strategies to pick the correct

value for the threshold as part of future work.

Answer: Yes, we can, and it is possible to deliver even better performance (8–

36% on top of existing reports). However, the methodology behind fine-grained

optimization enable/disable is not clear and is difficult to generalize. Potential

future work here could leverage the power of neural networks to identify these

hidden features.

5.7.8 Related Work

The concept of exploiting the dataflow task graph representation of LU factor-

ization is nothing new. In a prescient early work [56], the authors show optimal

120

Method Description Processor Speedup

Optimal Triangulation [56]
Generate triangulation graph
from sparse matrix

Sequential CPUs N/A

KLU [30]
Static analysis to minimize fillin,
no BLAS

Sequential CPUs N/A

NICSLU [21]
Multi-core parallelization of the
KLU solver

Multicore CPUs 2.1–8.6×

GPU-LU [138]
GPU-acceleration of the KLU
solver

Tesla K40 GPU 0.5–47.2×

Distributed Memory [134]
Parallel column computation, dy-
namic analysis

FPGAs 0.4–12.7×

Streaming [62]
Power flow systems, structured
sparse

FPGAs 2–10×

Token Dataflow [69] Dataflow design of the KLU solver FPGAs 0.6–13×

Table 5.4: Related Work

parallelization of LU factorization is possible by extracting the static triangulation

graph (we call this a dataflow graph). In the decades that followed, vector comput-

ers and bespoke accelerators for LU decomposition were proposed but they never

caught on due the rise of the Intel microprocessors. In this section, we review

some of the more recent approaches, revisiting this problem on modern parallel

accelerator hardware. Table 5.4 summarizes key characteristics of these related

works.

The KLU solver [30] is an improvement over the SuperLU solver[75] and is cus-

tomized for circuit simulation matrix factorization on sequential CPUs. KLU is

able to reduce matrix fillin and also fix the positions of the non-zeros in the factors

to optimize execution.

The NICSLU solver [21] enhances the KLU solver for use on shared memory multi-

core machines. The multi-core implementation is able to exploit only coarse-

grained parallelism at the granularity of column operations in the left-looking

Gilbert-Peierls Algorithm used in KLU.

A GPU-driven implementation in [138], showcases similar speedup trends as in

[21] but is also restricted to coarse-grained parallelism. In a bulk of the cases

for matrices like the ones used in this chapter, the GPU actually decelerates the

computation due to parallelism mismatch with the rigid data-parallel substrate. In

contrast, our FPGA-based dataflow accelerator can exploit additional fine-grained

parallelism within each column solve for these problems.

121

However, for a couple of isolated matrices, the GPU speedups are quite high

(45–47×), but they come at the expense of 8–10× more power than the FPGA

implementation. We can match those speedups if we partition our dataflow graph

across multiple FPGAs at similar total power consumption as a single GPU.

Parallel hardware designs for sparse matrix factorization have been explored in

recent past with an emphasis on power-efficient acceleration. [62] uses FPGAs to

accelerate LU decomposition but their work is application specific only to symmet-

ric power-flow matrices. [72] uses FPGAs to accelerate the block LU decomposition

on dense matrices, while [119] reduces the memory footprint of unrolled dense LU

decomposition. Our software optimizations focus on asymmetric and sparse ma-

trices which are harder to accelerate than these designs. In [134], the authors

bundle several columns (collectively called a panel) using a left-looking technique

to evaluate sparse matrix factorization in parallel on an FPGA network. [69]

uses complete loop unrolling for sparse factorization to exploit more fine-grained

dataflow parallelism with packet-switching networks to deliver highest reported

FPGA speedups for sparse LU factorization. The work presented in this the-

sis expands on this approach by (1) proposing software pre-processing techniques

for exposing additional parallelism, and (2) developing a high-performance token

dataflow overlay coprocessor hardware that is well-suited for irregular parallelism.

5.8 Future Work

• As mentioned previously, the work presented here has been evaluated on an

older design iteration that has been replaced with a much leaner and more

performant overlay architecture in DaCO. Our goal in the future is to re-

package and re-evaluate these dataflow-centric software optimizations on the

newer architecture as soon as possible. We are confident that the software

optimizations presented in this chapter would deliver promising results on

DaCO.

• Partitioning strategies can have a significant impact on runtime performance.

With the introduction of clustered-PE regions in DaCO, we would work on

a topology-aware partitioner that is customized for DaCO.

122

• Machine learning has transformed the software ecosystem in the past few

years. We hope to apply some of these machine learning techniques to fur-

ther improve dataflow graph optimizations – examples could be in better

partitioning and placement, or improved optimization selection based on

graph characteristics. Machine learning could also help with identification

of dataflow-friendly compute regions in an application, that can help the

compiler make better scheduling decisions for dynamic HLS flows.

5.9 Conclusions

We show how to accelerate LU factorization by 1.9–4.6× while consuming 3–4×
less power across a range of benchmark matrices when comparing a Xilinx Virtex-6

LX760 FPGA with an Intel Xeon 2407 CPU. The magnitude of speedups scales

well with the matrix size. Almost half of the speedup comes purely from dataflow

formulation of the problem while the rest is due to dataflow graph optimizations

such as recursive substitution and criticality-aware repacking. We explore the

work-parallelism tradeoffs inherent in our dataflow optimizations and show how

these help make our design scale for 100s of parallel processors. Empirical ev-

idence indicates minimal impact of rearranging the floating-point multiplication

and addition operations on the ~b− A~x residual.

5.10 Publications

Subsets of this body of work has been published in the following peer-reviewed

conference proceedings:

1. Siddhartha and Nachiket Kapre, Breaking Sequential Dependencies in FPGA-

based Sparse LU Factorization, International Symposium on Field Programmable

Custom Computing Machines, May 2014 (Short Paper)

2. Siddhartha and Nachiket Kapre, Heterogeneous Dataflow Architectures for

FPGA-based Sparse LU Factorization, International Conference on Field

Programmable Logic and Applications, September 2014 (Poster)

123

3. Siddhartha and Nachiket Kapre, Fanout Decomposition Dataflow Optimiza-

tions for FPGA-based Sparse LU Factorization, International Conference on

Field-Programmable Technology, December 2014 (Short Paper)

4. Siddhartha and Nachiket Kapre, FPGA Acceleration of Irregular Iterative

Computations using Criticality-Aware Dataflow Optimizations, 22nd IEEE

Symposium on Field Programmable Gate Arrays, February 2015 (Poster)

Chapter 6

Conclusion

6.1 Final Contributions

This thesis introduces the Dataflow Overlay Coprocessor (DaCO) engine tuned

for FPGAs. The work on DaCO is composed of three key bodies of research:

(1) the soft processor design, (2) the communication framework design, and (3)

the software backend design. We summarize the quantitative benefits observed

through each of these works below:

1. Soft Processor Design : By introducing out-of-order criticality-aware

scheduling inside the token dataflow soft processor, the DaCO soft processor

delivers up to 2.5–2.8× improved performance over existing token dataflow

architectures and server class CPUs (Intel Xeon E5-2680). The out-of-order

scheduler is capable of scheduling on 1000s of active nodes. This is achieved

through a lightweight hierarchical leading-ones detector circuit that adds a

70% logic overhead to the existing design, while, more importantly, freeing

up precious block RAM resources to allow storage of larger dataflow graphs

by up to 20% in the on-chip memory.

2. Communication Framework : The communication framework adopts a

hierarchical topology where clustering groups of PEs together that are con-

nected by local crossbars improves performance by up to 1.5× at a 15–40%

logic resource overhead (for 2–4 cluster sizes). The packet-switching router

124

125

that connects each cluster is also augmented with priority-aware routing fea-

tures, which we call Hoplite-Q*. When evaluated with mixed-priority multi-

application workloads, Hoplite-Q* is capable of accelerating top-priority ap-

plications by 1.3–1.9× (1.5–3.9× improved worst-case latency), at a resource

overhead of 3.8×. On dataflow workloads, Hoplite-Q* has limited impact

when used in conjunction with the out-of-order PE-DaCO, but demonstrates

potential for the future with larger benchmarks and dynamic dataflow exe-

cution model.

3. Software Backend : Dataflow-inspired software optimizations that rear-

range the graph structure at compile time can deliver runtime speedups of

1.9–4.6× over CPU implementations when evaluated on LU factorization

traces extracted from SPICE benchmarks. These optimizations deliver up

to 11× better GFLOPs utilization when compared to the Intel Xeon 2407

CPU. Finally, these software optimizations have no noticeable side-effect on

the numerical stability of the SPICE kernels, as the benchmarks are still

able to achieve convergence. While the software backend was developed and

tested on an older iteration of our token dataflow overlay, we are confident

that the software optimizations proposed in this body of work would apply

favorably to benchmarks evaluated on DaCO as well.

6.2 Lessons

Datapath occupancy : From our experiments, dataflow graphs are typically

“top-heavy”, where most of the parallelism is concentrated at the top of the

dataflow graph, while the tail-end of the dataflow graph usually peters out into a

long sequential tail. This results in varying levels of occupancy in the processor

pipeline, which results in vast under-utilization of the long FIFO in existing token

dataflow processors. Moreover, since the FIFO has to be scaled for the worst-case,

the resource utilization efficiency is poor. Our criticality-aware scheduling strategy

in DaCO corrects these inefficiences and opens up new optimization possibilities

for future designs. For example, age-based reordering at runtime could further

improve scheduling performance, similar to the observation when moving from

Hoplite-Q to Hoplite-Q* in Chapter 4. The long sequential tail also motivates

the design of a tightly-coupled datapath, where sequential chains of instructions

are mapped to a single processor and executed in a back-to-back fashion. One

126

strategy to address this is to adopt the codelet model (see Future Work section

below).

Dataflow Injection Rates : Average injection rates of token dataflow bench-

marks was observed to be fairly low since only a subset of edges are active in

each cycle. This motivates the move from a bidirectional buffered mesh router

to a much more lightweight deflection router like Hoplite, which can support the

observed dataflow injection rates (≤10%). Our results with DaCO demonstrated

the benefits of this approach, as both scalability and throughput performance of

the benchmarks improved. The low injection rates also, however, allude to limi-

tations of the packet generator: while the packet consumer and scheduler pipeline

stages can be theoretically kept busy in all cycles, there is a 4-cycle setup cost

associated with each node inside the packet generator due to node/edge mem-

ory read latencies. We support back-to-back edge injection from the active node,

but unfortuantely, this is not sufficient to keep the communication network busy.

In the future, we would look into supporting back-to-back node and edge evalua-

tion inside the packet generator to raise injection rates. This is a performance-area

tradeoff, where we issue and store speculative reads that allow back-to-back packet

injection across both nodes and edges.

Criticality-awareness : Throughout this thesis, we have emphasized on criticality-

aware optimizations at all design levels, which has been missing in existing FPGA-

based token dataflow overlays. In the processor, criticality-aware scheduling not

only improves throughput performance by 0.9–2.6×, but also frees up on-chip

BRAM resources for better resource efficiency. In the network-on-chip commu-

nication framework, Hoplite-Q* currently has limited impact on dataflow prob-

lems, with 1–10% improvement in performance depending on the type of PE

used (PE-Baseline or PE-DaCO). When considering multi-application workloads,

Hoplite-Q* shows capability of accelerating top-priority (i.e. most critical) ap-

plication throughput by up to 1.9×, which could be suitable for a multi-tenant

datacenter-type of shared environment. Finally, our software compiler also in-

corporates criticality-aware modifications that showcase >2× improvements over

the baseline token dataflow overlay when evaluated on SPICE circuit simulation

benchmarks. These results motivate us to continue exploring criticality-aware

evaluation for token dataflow problems, and in the future, we hope to continue

refining these ideas and quantify their effects on a wider set of benchmarks.

127

6.3 Future Work

We believe there is still plenty of room at the bottom to innovate and push the

performance of DaCO even further. Here, we list the top three research vectors

that we hope to undertake in the near future

1. Coprocessor coupling : While SoCs like Intel 6138P or Xilinx Zynq plat-

forms bring FPGA-based coprocessors closer to the microprocesor, this is

not the only solution to designing coprocessor-dominated architectures. For

example, a small RISC-V [129] processor assigned to each cluster on-chip

could tighten the coupling even further. In [90], the authors demonstrated

the feasibility of a tightly-coupled von Neumann core and explicit dataflow

core, and we hope to emulate and extend this branch of research with DaCO.

2. Codelet model : The work in this thesis so far has largely focused on fine-

grained dataflow acceleration, where each node/vertex in the graph is an

arithmetic instruction. While this exposes raw parallelism in the algorithm,

it does, however, introduce runtime overheads (i.e. large number of nodes and

edges) and optimization problems (e.g. graph partitioning and placement for

distributed architectures). Instead, to derive good performance and alleviate

resource impact, one strategy could be to cluster groups of highly-localized

computations together into a codelet [142]. Codelets, for example, in the

case of convolutional neural networks, could represent a single convolution,

which is a multi-instruction filter operation that operates on a localized pixel

region. Codelets can be likened to the Explicit Token Store [93] model where

activation frames bound groups of instructions that evaluate in dataflow-like

order. We aim to explore the codelet granularity and extend our software

backend and our runtime ISA to support the generation and execution of

these codelet instructions.

3. Benchmarks : With the above two enhancements, we believe DaCO can

be suitable for other application domains that are riddled with irregular

forms of parallelism and synchronization overheads. Some promising fields

include sparse convolutional neural networks, graph convolutional networks,

and molecular dynamics. We hope to demonstrate DaCO’s feasibility in

these application domains in the near future.

Bibliography

[1] Kaveh Aasaraai and Andreas Moshovos. “Design space exploration of in-

struction schedulers for out-of-order soft processors”. In: Field-Programmable

Technology (FPT), 2010 International Conference on. IEEE. 2010, pp. 385–

388.

[2] P. Abad, P. Prieto, L. G. Menezo, A. Colaso, V. Puente, and J. Á. Gre-

gorio. “TOPAZ: An Open-Source Interconnection Network Simulator for

Chip Multiprocessors and Supercomputers”. In: 2012 IEEE/ACM Sixth In-

ternational Symposium on Networks-on-Chip. May 2012, pp. 99–106. doi:

10.1109/NOCS.2012.19.

[3] Mohamed S Abdelfattah and Vaughn Betz. “Networks-on-chip for FPGAs:

Hard, soft or mixed?” In: ACM Transactions on Reconfigurable Technology

and Systems (TRETS) 7.3 (2014), p. 20.

[4] Ankur Agarwal, Cyril Iskander, and Ravi Shankar. “Survey of Network on

Chip (NoC) architectures and contributions”. In: Journal of engineering,

Computing and Architecture 3.1 (2009), pp. 21–27.

[5] EC Amazon. F1 Instance.

[6] Patrick R Amestoy, Timothy A Davis, and Iain S Duff. “Algorithm 837:

AMD, an Approximate Minimum Degree Ordering Algorithm”. In: ACM

Trans. Math. Softw. 30.3 (2004), pp. 381–388.

[7] Federico Angiolini, Paolo Meloni, Salvatore Carta, Luca Benini, and Luigi

Raffo. “Contrasting a NoC and a traditional interconnect fabric with layout

awareness”. In: Proceedings of the Design Automation & Test in Europe

Conference. Vol. 1. IEEE. 2006, pp. 1–6.

[8] SA Arteris. From Bus and Crossbar to Network-on-Chip. 2009.

128

https://doi.org/10.1109/NOCS.2012.19

129

[9] Shane Bell, Bruce Edwards, John Amann, Rich Conlin, Kevin Joyce, Vince

Leung, John MacKay, Mike Reif, Liewei Bao, John Brown, Matthew Mat-

tina, Chyi-Chang Miao, Carl Ramey, David Wentzlaff, Walker Anderson,

Ethan Berger, Nat Fairbanks, Durlov Khan, Froilan Montenegro, Jay Stick-

ney, and John Zook. “Tile64-processor: A 64-core soc with mesh intercon-

nect”. In: Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of

Technical Papers. IEEE International. IEEE. 2008, pp. 88–598.

[10] Luca Benini and Giovanni De Micheli. “Networks on Chips: A New SoC

Paradigm”. In: Computer 35.1 (Jan. 2002), pp. 70–78. issn: 0018-9162. doi:

10.1109/2.976921. url: https://doi.org/10.1109/2.976921.

[11] Tobias Bjerregaard and Shankar Mahadevan. “A survey of research and

practices of network-on-chip”. In: ACM Computing Surveys (CSUR) 38.1

(2006), p. 1.

[12] S. Borkar. “Achieving energy efficiency by HW/SW co-design”. In: 2013

Third Berkeley Symposium on Energy Efficient Electronic Systems (E3S).

Oct. 2013, pp. 1–1. doi: 10.1109/E3S.2013.6705856.

[13] Alexander Brant and Guy GF Lemieux. “ZUMA: An open FPGA over-

lay architecture”. In: Field-Programmable Custom Computing Machines

(FCCM), 2012 IEEE 20th Annual International Symposium on. IEEE.

2012, pp. 93–96.

[14] Franc Brglez, David Bryan, and Krzysztof Kozminski. “Combinational pro-

files of sequential benchmark circuits”. In: Circuits and Systems, 1989.,

IEEE International Symposium on. IEEE. 1989, pp. 1929–1934.

[15] Doug Burger, Stephen W Keckler, Kathryn S McKinley, Mike Dahlin, Lizy

K John, Calvin Lin, Charles R Moore, James Burrill, Robert G McDonald,

and William Yoder. “Scaling to the End of Silicon with EDGE Architec-

tures”. In: Computer 37.7 (2004), pp. 44–55.

[16] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kam-

moona, Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. “LegUp:

high-level synthesis for FPGA-based processor/accelerator systems”. In:

Proceedings of the 19th ACM/SIGDA international symposium on Field

programmable gate arrays. ACM. 2011, pp. 33–36.

https://doi.org/10.1109/2.976921
https://doi.org/10.1109/2.976921
https://doi.org/10.1109/E3S.2013.6705856

130

[17] Juan-Antonio Carballo, Wei-Ting Jonas Chan, Paolo A Gargini, Andrew

B Kahng, and Siddhartha Nath. “ITRS 2.0: Toward a re-framing of the

Semiconductor Technology Roadmap”. In: Computer Design (ICCD), 2014

32nd IEEE International Conference on. IEEE. 2014, pp. 139–146.

[18] Umit V Catalyürek and Cevdet Aykanat. “PaToH: a multilevel hypergraph

partitioning tool, version 3.0”. In: Bilkent University, Department of Com-

puter Engineering, Ankara 6533 (1999).

[19] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy

Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur,

Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin Ovtcharov, Michael Pa-

pamichael, Lisa Woods, Sitaram Lanka, Derek Chiou, and Doug Burger. “A

Cloud-Scale Acceleration Architecture”. In: The 49th Annual IEEE/ACM

International Symposium on Microarchitecture. IEEE Press. 2016, p. 7.

[20] Hui Yan Cheah, Suhaib A Fahmy, and Douglas L Maskell. “iDEA: A

DSP block based FPGA soft processor”. In: Field-Programmable Technol-

ogy (FPT), 2012 International Conference on. IEEE. 2012, pp. 151–158.

[21] Xiaoming Chen, Yu Wang, and Huazhong Yang. “NICSLU: An Adaptive

Sparse Matrix Solver for Parallel Circuit Simulation”. In: Computer-Aided

Design of Integrated Circuits and Systems, IEEE Transactions on 32.2

(2013), pp. 261–274.

[22] Christopher H Chou, Aaron Severance, Alex D Brant, Zhiduo Liu, Saurabh

Sant, and Guy GF Lemieux. “VEGAS: Soft vector processor with scratch-

pad memory”. In: Proceedings of the 19th ACM/SIGDA international sym-

posium on Field programmable gate arrays. ACM. 2011, pp. 15–24.

[23] James Coole and Greg Stitt. “Intermediate fabrics: Virtual architectures

for circuit portability and fast placement and routing”. In: Proceedings of

the eighth IEEE/ACM/IFIP international conference on Hardware/soft-

ware codesign and system synthesis. ACM. 2010, pp. 13–22.

[24] David E Culler. “Dataflow architectures”. In: Annual review of computer

science 1.1 (1986), pp. 225–253.

[25] William James Dally and Brian Patrick Towles. Principles and practices of

interconnection networks. Elsevier, 2004.

131

[26] R. Das, O. Mutlu, T. Moscibroda, and C. Das. “Aergia: A Network-on-

Chip Exploiting Packet Latency Slack”. In: IEEE Micro 31.1 (Jan. 2011),

pp. 29–41. issn: 0272-1732. doi: 10.1109/MM.2010.98.

[27] Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and Chita R Das.

“Application-aware prioritization mechanisms for on-chip networks”. In:

Microarchitecture, 2009. MICRO-42. 42nd Annual IEEE/ACM Interna-

tional Symposium on. IEEE. 2009, pp. 280–291.

[28] Jeffrey A Davis, Raguraman Venkatesan, Alain Kaloyeros, Michael Beylan-

sky, Shukri J Souri, Kaustav Banerjee, Krishna C Saraswat, Arifur Rah-

man, Rafael Reif, and James D Meindl. “Interconnect limits on gigascale

integration (GSI) in the 21st century”. In: Proceedings of the IEEE 89.3

(2001), pp. 305–324.

[29] T Davis. “The University of Florida Sparse Matrix Collection”. In: (unpub-

lished) ACM Transactions on Mathematical Software (2007).

[30] Timothy A Davis and Ekanathan Palamadai Natarajan. “Algorithm 907:

KLU, A Direct Sparse Solver for Circuit Simulation Problems”. In: ACM

Transactions on Mathematical Software 37.3 (2010), 36:1–36:17.

[31] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, and A.R. LeBlanc.

“Design of ion-implanted MOSFET’s with very small physical dimensions”.

In: Solid-State Circuits, IEEE Journal of 9.5 (Oct. 1974), pp. 256–268.

issn: 0018-9200. doi: 10.1109/JSSC.1974.1050511.

[32] Jack B Dennis and David P Misunas. “A preliminary architecture for a basic

data-flow processor”. In: ACM SIGARCH Computer Architecture News 3.4

(1975), pp. 126–132.

[33] Xuan Khanh Do, Stephane Louise, and Albert Cohen. “Comparing the

StreamIt and ΣC languages for manycore processors”. In: Int. l Workshop

on Data-Flow Models (DFM) for Extreme Scale Computing. IEEE. 2014.

[34] Ronald G Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester,

and Trevor Mudge. “Near-threshold computing: Reclaiming moore’s law

through energy efficient integrated circuits”. In: Proceedings of the IEEE

98.2 (2010), pp. 253–266.

https://doi.org/10.1109/MM.2010.98
https://doi.org/10.1109/JSSC.1974.1050511

132

[35] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankar-

alingam, and Doug Burger. “Dark silicon and the end of multicore scal-

ing”. In: Computer Architecture (ISCA), 2011 38th Annual International

Symposium on. IEEE. 2011, pp. 365–376.

[36] Hadi Esmaeilzadeh, Emily Blem, Renée St Amant, Karthikeyan Sankar-

alingam, and Doug Burger. “Power challenges may end the multicore era”.

In: Communications of the ACM 56.2 (2013), pp. 93–102.

[37] Chris Fallin, Chris Craik, and Onur Mutlu. “CHIPPER: A low-complexity

bufferless deflection router”. In: High Performance Computer Architecture

(HPCA), 2011 IEEE 17th International Symposium on. IEEE. 2011, pp. 144–

155.

[38] Chris Fallin, Greg Nazario, Xiangyao Yu, Kevin Chang, Rachata Ausavarung-

nirun, and Onur Mutlu. “MinBD: Minimally-buffered deflection routing for

energy-efficient interconnect”. In: Networks on Chip (NoCS), 2012 Sixth

IEEE/ACM International Symposium on. IEEE. 2012, pp. 1–10.

[39] Joel H Ferziger and Milovan Peric. Computational methods for fluid dy-

namics. Springer Science & Business Media, 2012.

[40] David J Frank. “Power-constrained CMOS scaling limits”. In: IBM Journal

of Research and Development 46.2.3 (2002), pp. 235–244.

[41] David J Frank, Robert H Dennard, Edward Nowak, Paul M Solomon,

Yuan Taur, and Hon-Sum Philip Wong. “Device scaling limits of Si MOS-

FETs and their application dependencies”. In: Proceedings of the IEEE

89.3 (2001), pp. 259–288.

[42] Alexandros V Gerbessiotis and Leslie G Valiant. “Direct bulk-synchronous

parallel algorithms”. In: Journal of parallel and distributed computing 22.2

(1994), pp. 251–267.

[43] Nathan Goulding, Jack Sampson, Ganesh Venkatesh, Saturnino Garcia,

Joe Auricchio, Jonathan Babb, Michael B Taylor, and Steven Swanson.

“GreenDroid: A mobile application processor for a future of dark silicon”.

In: 2010 IEEE Hot Chips 22 Symposium (HCS). IEEE. 2010, pp. 1–39.

[44] V. Govindaraju, C. H. Ho, T. Nowatzki, J. Chhugani, N. Satish, K. Sankar-

alingam, and C. Kim. “DySER: Unifying Functionality and Parallelism Spe-

cialization for Energy-Efficient Computing”. In: IEEE Micro 32.5 (Sept.

2012), pp. 38–51. issn: 0272-1732. doi: 10.1109/MM.2012.51.

https://doi.org/10.1109/MM.2012.51

133

[45] Jan Gray. “GRVI Phalanx: A massively parallel RISC-V FPGA accel-

erator”. In: 2016 IEEE 24th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM). IEEE. 2016, pp. 17–

20.

[46] Jan Gray and Aaron Smith. “Towards an Area-Efficient Implementation

of a High ILP EDGE Soft Processor”. In: CoRR abs/1803.06617 (2018).

arXiv: 1803.06617. url: http://arxiv.org/abs/1803.06617.

[47] Peter Greenhalgh. “Big. LITTLE Processing with ARM Cortex-A15 and

Cortex-A7”. In: ARM White paper 17 (2011).

[48] John R Gurd, Chris C Kirkham, and Ian Watson. “The Manchester pro-

totype dataflow computer”. In: Communications of the ACM 28.1 (1985),

pp. 34–52.

[49] John L Hennessy and David A Patterson. Computer architecture: a quan-

titative approach. Elsevier, 2011.

[50] J. Hicks, D. Chiou, B.S. Ang, and Arvi. “Performance Studies of Id on

the Monsoon Dataflow System”. In: Journal of Parallel and Distributed

Computing 18.3 (1993), pp. 273–300. issn: 0743-7315. doi: https://doi.

org/10.1006/jpdc.1993.1065. url: http://www.sciencedirect.com/

science/article/pii/S0743731583710658.

[51] Clint Hilton and Brent Nelson. “PNoC: a flexible circuit-switched NoC for

FPGA-based systems”. In: IEE Proceedings-Computers and Digital Tech-

niques 153.3 (2006), pp. 181–188.

[52] H J Hoover, M M Klawe, and N J Pippenger. “Bounding Fan-out in Logical

Networks”. In: Journal of the ACM 31.1 (Jan. 1984), pp. 13–18.

[53] Jason Howard, Saurabh Dighe, Yatin Hoskote, Sriram Vangal, David Fi-

nan, Gregory Ruhl, David Jenkins, Howard Wilson, Nitin Borkar, Gerhard

Schrom, Fabrice Pailet, Shailendra Jain, Tiju Jacob, Satish Yada, Sraven

Marella, Praveen Salihundam, Vasantha Erraguntla, Michael Konow, Michael

Riepen, Guido Droege, Joerg Lindemann, Matthias Gries, Thomas Apel,

Kersten Henriss, Tor Lund-Larsen, Sebastian Steibl, Shekhar Borkar, Vivek

De, Rob Van Der Wijngaart, and Timothy Mattson. “A 48-core IA-32

message-passing processor with DVFS in 45nm CMOS”. In: Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE In-

ternational. IEEE. 2010, pp. 108–109.

https://arxiv.org/abs/1803.06617
http://arxiv.org/abs/1803.06617
https://doi.org/https://doi.org/10.1006/jpdc.1993.1065
https://doi.org/https://doi.org/10.1006/jpdc.1993.1065
http://www.sciencedirect.com/science/article/pii/S0743731583710658
http://www.sciencedirect.com/science/article/pii/S0743731583710658

134

[54] Y. Huan and A. DeHon. “FPGA optimized packet-switched NoC using

split and merge primitives”. In: 2012 International Conference on Field-

Programmable Technology. Dec. 2012, pp. 47–52. doi: 10.1109/FPT.2012.

6412110.

[55] Yutian Huan and A DeHon. “FPGA optimized packet-switched NoC using

split and merge primitives”. In: Field-Programmable Technology (FPT),

2012 International Conference on. Dec. 2012, pp. 47–52.

[56] J Huang and O Wing. “Optimal parallel triangulation of a sparse matrix”.

In: IEEE Transactions on Circuits and Systems 26.9 (1979), pp. 726–732.

[57] D A Huffman. “A Method for the Construction of Minimum-Redundancy

Codes”. In: Proceedings of the IRE 40.9 (Sept. 1952), pp. 1098–1101.

[58] Intel. Intel FPGAs and Processors - Better Together. 2018. url: https://

itpeernetwork.intel.com/intel-processors-fpga-better-together.

[59] Intel shows Xeon Scalable GOld 6138P with Integrated FPGA, Shipping to

Vendors. https://www.anandtech.com/show/12773/intel- shows-

xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-

vendors. Accessed: 2018-06-20.

[60] Abhishek Kumar Jain. “Architecture Centric Coarse-Grained FPGA Over-

lays”. PhD thesis. Nanyang Technological University, 2017.

[61] Abhishek Kumar Jain, Suhaib A Fahmy, and Douglas L Maskell. “Efficient

Overlay architecture based on DSP blocks”. In: 2015 IEEE 23rd Annual

International Symposium on Field-Programmable Custom Computing Ma-

chines. IEEE. 2015, pp. 25–28.

[62] Jeremy Johnson, Tim Chagnon, Petya Vachranukunkiet, Prawat Nagva-

jara, and Chika Nwankpa. “Sparse LU Decomposition using FPGA”. In:

Intl. Workshop on State-of-the-Art in Scientific and Parallel Computing

(PARA). 2008.

[63] Norman P Jouppi, Cliff Young, Nishant Patil, and David Patterson. “A

Domain-Specific Architecture for Deep Neural Networks”. In: Communica-

tions of the ACM 61.9 (2018), pp. 50–59.

[64] N. Kapre and J. Gray. “Hoplite: Building austere overlay NoCs for FPGAs”.

In: 2015 25th International Conference on Field Programmable Logic and

Applications (FPL). Sept. 2015, pp. 1–8. doi: 10.1109/FPL.2015.7293956.

https://doi.org/10.1109/FPT.2012.6412110
https://doi.org/10.1109/FPT.2012.6412110
https://itpeernetwork.intel.com/intel-processors-fpga-better-together
https://itpeernetwork.intel.com/intel-processors-fpga-better-together
https://www.anandtech.com/show/12773/intel-shows-xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors
https://www.anandtech.com/show/12773/intel-shows-xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors
https://www.anandtech.com/show/12773/intel-shows-xeon-scalable-gold-6138p-with-integrated-fpga-shipping-to-vendors
https://doi.org/10.1109/FPL.2015.7293956

135

[65] N. Kapre and J. Gray. “Hoplite: Building austere overlay NoCs for FPGAs”.

In: 2015 25th International Conference on Field Programmable Logic and

Applications (FPL). Sept. 2015, pp. 1–8. doi: 10.1109/FPL.2015.7293956.

[66] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J. Wil-

son, M. Wrighton, and A. DeHon. “Packet Switched vs. Time Multiplexed

FPGA Overlay Networks”. In: 2006 14th Annual IEEE Symposium on

Field-Programmable Custom Computing Machines. Apr. 2006, pp. 205–216.

doi: 10.1109/FCCM.2006.55.

[67] Nachiket Kapre. “Deflection-routed butterfly fat trees on FPGAs”. In: 2017

27th International Conference on Field Programmable Logic and Applica-

tions (FPL). IEEE. 2017, pp. 1–8.

[68] Nachiket Kapre. “Implementing FPGA Overlay NoCs Using the Xilinx Ul-

traScale Memory Cascades”. In: Field-Programmable Custom Computing

Machines (FCCM), 2017 IEEE 25th Annual International Symposium on.

IEEE. 2017, pp. 40–47.

[69] Nachiket Kapre and Andre DeHon. “Parallelizing Sparse Matrix Solve for

SPICE circuit simulation using FPGAs”. In: Field-Programmable Technol-

ogy. Jan. 2010.

[70] Nachiket Kapre and Siddhartha. “Limits of Statically-Scheduled Token

Dataflow Processing”. In: Data-Flow Execution Models for Extreme Scale

Computing (DFM), 2014 Fourth Workshop on. IEEE. 2014, pp. 1–8.

[71] Dirk Koch, Christian Beckhoff, and Guy GF Lemieux. “An efficient FPGA

overlay for portable custom instruction set extensions”. In: Field Programmable

Logic and Applications (FPL), 2013 23rd International Conference on.

IEEE. 2013, pp. 1–8.

[72] M Kumar Jaiswal and N Chandrachoodan. “FPGA-Based High-Performance

and Scalable Block LU Decomposition Architecture”. In: IEEE Transac-

tions on Computers 61.1 (2012), pp. 60–72.

[73] Charles Eric LaForest and J Gregory Steffan. “Efficient multi-ported mem-

ories for FPGAs”. In: Proceedings of the 18th annual ACM/SIGDA interna-

tional symposium on Field programmable gate arrays. ACM. 2010, pp. 41–

50.

https://doi.org/10.1109/FPL.2015.7293956
https://doi.org/10.1109/FCCM.2006.55

136

[74] Jae W Lee, Man Cheuk Ng, and Krste Asanovic. “Globally-synchronized

frames for guaranteed quality-of-service in on-chip networks”. In: ACM

SIGARCH Computer Architecture News. Vol. 36. 3. IEEE Computer Soci-

ety. 2008, pp. 89–100.

[75] Xiaoye S Li. “An Overview of SuperLU: Algorithms, Implementation, and

User Interface”. In: ACM Transactions on Mathematical Software 31.3

(Sept. 2005), pp. 302–325.

[76] Yuhai Li, Kuizhi Mei, Yuehu Liu, Nanning Zheng, and Yi Xu. “LDBR:

Low-deflection bufferless router for cost-sensitive network-on-chip design”.

In: Microprocessors and Microsystems 38.7 (2014), pp. 669–680.

[77] Baoyuan Liu, Min Wang, Hassan Foroosh, Marshall Tappen, and Mari-

anna Pensky. “Sparse convolutional neural networks”. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition. 2015,

pp. 806–814.

[78] Cheng Liu, Ho-Cheung Ng, and Hayden Kwok-Hay So. “QuickDough: a

rapid FPGA loop accelerator design framework using soft CGRA over-

lay”. In: 2015 International Conference on Field Programmable Technology

(FPT). IEEE. 2015, pp. 56–63.

[79] Zhonghai Lu, Mingchen Zhong, and Axel Jantsch. “Evaluation of on-chip

networks using deflection routing”. In: Proceedings of the 16th ACM Great

Lakes symposium on VLSI. ACM. 2006, pp. 296–301.

[80] Roman L Lysecky, Kris Miller, Frank Vahid, and Kees A Vissers. “Firm-

core virtual FPGA for just-in-time FPGA compilation”. In: FPGA. 2005,

p. 271.

[81] Roman Lysecky, Frank Vahid, and Sheldon X-D Tan. “Dynamic FPGA

routing for just-in-time FPGA compilation”. In: Proceedings of the 41st

annual Design Automation Conference. ACM. 2004, pp. 954–959.

[82] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,

Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. “Pregel: a system for

large-scale graph processing”. In: Proceedings of the 2010 ACM SIGMOD

International Conference on Management of data. ACM. 2010, pp. 135–

146.

[83] Giovanni De Micheli. Synthesis and optimization of digital circuits. McGraw-

Hill Higher Education, 1994.

137

[84] G. E. Moore. “Cramming More Components onto Integrated Circuits”. In:

Electronics 38.8 (Apr. 1965), pp. 114–117. issn: 0018-9219. doi: 10.1109/

jproc.1998.658762. url: http://dx.doi.org/10.1109/jproc.1998.

658762.

[85] Thomas Moscibroda and Onur Mutlu. “A case for bufferless routing in on-

chip networks”. In: ACM SIGARCH Computer Architecture News. Vol. 37.

3. ACM. 2009, pp. 196–207.

[86] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair Fort,

Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fabrizio Fer-

randi, Jason Anderson, and Koen Bertels. “A survey and evaluation of

FPGA high-level synthesis tools”. In: IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems 35.10 (2016), pp. 1591–

1604.

[87] II Nios. “Gen2 Processor Reference Guide”. In: Altera Corporation (Refer-

ence Guide). Cited on page 10 (2015), p. 108.

[88] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan

Sankaralingam. “Stream-dataflow acceleration”. In: Computer Architecture

(ISCA), 2017 ACM/IEEE 44th Annual International Symposium on. IEEE.

2017, pp. 416–429.

[89] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. “Ex-

ploring the Potential of Heterogeneous Von Neumann/Dataflow Execution

Models”. In: Proceedings of the 42nd International Symposium on Com-

puter Architecture (ISCA). 2015.

[90] Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam. “Ex-

ploring the potential of heterogeneous von neumann/dataflow execution

models”. In: ACM SIGARCH Computer Architecture News. Vol. 43. 3.

ACM. 2015, pp. 298–310.

[91] CUDA Nvidia. “Nvidia CUDA C Programming Guide”. In: Nvidia Corpo-

ration 120.18 (2011), p. 8.

[92] David A Papa and Igor L Markov. Hypergraph Partitioning and Clustering.

2007.

[93] G M Papadopoulos and D E Culler. “Monsoon: an explicit token-store

architecture”. In: Proceedings of the Annual International Symposium on

Computer Architecture 18.3a (1990), pp. 82–91.

https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1109/jproc.1998.658762
http://dx.doi.org/10.1109/jproc.1998.658762
http://dx.doi.org/10.1109/jproc.1998.658762

138

[94] Michael K. Papamichael and James C. Hoe. “CONNECT: Re-examining

Conventional Wisdom for Designing Nocs in the Context of FPGAs”. In:

Proceedings of the ACM/SIGDA International Symposium on Field Pro-

grammable Gate Arrays. FPGA ’12. Monterey, California, USA: ACM,

2012, pp. 37–46. isbn: 978-1-4503-1155-7. doi: 10.1145/2145694.2145703.

url: http://doi.acm.org/10.1145/2145694.2145703.

[95] Michael K Papamichael and James C Hoe. “CONNECT: re-examining con-

ventional wisdom for designing nocs in the context of FPGAs”. In: the

ACM/SIGDA international symposium. New York, New York, USA: ACM

Press, 2012, p. 37.

[96] Raphael Polig, Heiner Giefers, and Walter Stechele. “A soft-core processor

array for relational operators”. In: 2015 IEEE 26th International Confer-

ence on Application-specific Systems, Architectures and Processors (ASAP).

IEEE. 2015, pp. 17–24.

[97] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros

Constantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi

Prashanth Gopal, Jan Gray, Michael Haselman, Scott Hauck, Stephen

Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka, James Larus, Eric

Peterson, Simon Pope, Aaron Smith, Jason Thong, Phillip Yi Xiao, and

Doug Burger. “A reconfigurable fabric for accelerating large-scale datacen-

ter services”. In: ACM SIGARCH Computer Architecture News 42.3 (2014),

pp. 13–24.

[98] Pynq: Python Productivity for Zynq. https://pynq.io. Accessed: 2018-

06-20.

[99] Arun Raghavan, Yixin Luo, Anuj Chandawalla, Marios Papaefthymiou,

Kevin P Pipe, Thomas F Wenisch, and Milo MK Martin. “Computational

sprinting”. In: High Performance Computer Architecture (HPCA), 2012

IEEE 18th International Symposium on. IEEE. 2012, pp. 1–12.

[100] RM Ramanathan. “Intel R© Multi-Core Processors”. In: Making the Move

to Quad-Core and Beyond (2006).

[101] Reconfigure.io. https://reconfigure.io. Accessed: 2018-03-30.

[102] Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, and Huazhong Yang.

“Sparse LU factorization for parallel circuit simulation on GPU”. In: Design

Automation Conference (DAC), 2012 49th ACM/EDAC/IEEE. June 2012,

pp. 1125–1130.

https://doi.org/10.1145/2145694.2145703
http://doi.acm.org/10.1145/2145694.2145703
https://pynq.io
https://reconfigure.io

139

[103] Shuichi Sakai, Yoshinori Yamaguchi, Kei Hiraki, Yuetsu Kodama, and Toshit-

sugu Yuba. “An architecture of a dataflow single chip processor”. In: ACM

SIGARCH Computer Architecture News. Vol. 17. 3. ACM. 1989, pp. 46–53.

[104] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu

Kim, Jaehyuk Huh, Nitya Ranganathan, Doug Burger, Stephen W Keck-

ler, Robert G McDonald, and Charles R Moore. “TRIPS: A Polymorphous

Architecture for Exploiting ILP, TLP, and DLP”. In: ACM Transactions

on Architecture and Code Optimization (TACO) 1.1 (2004), pp. 62–93.

[105] Aaron Severance and Guy Lemieux. “VENICE: A compact vector proces-

sor for FPGA applications”. In: 2012 International Conference on Field-

Programmable Technology. IEEE. 2012, pp. 261–268.

[106] Aaron Severance and Guy GF Lemieux. “Embedded supercomputing in

FPGAs with the VectorBlox MXP matrix processor”. In: Proceedings of the

Ninth IEEE/ACM/IFIP International Conference on Hardware/Software

Codesign and System Synthesis. IEEE Press. 2013, p. 6.

[107] Devendra Kumar Sharma, BK Kaushik, and RK Sharma. “VLSI intercon-

nects and their testing: prospects and challenges ahead”. In: Journal of

Engineering, Design and Technology 9.1 (2011), pp. 63–84.

[108] David E. Shaw, J. P. Grossman, Joseph A. Bank, Brannon Batson, J. Adam

Butts, Jack C. Chao, Martin M. Deneroff, Ron O. Dror, Amos Even,

Christopher H. Fenton, Anthony Forte, Joseph Gagliardo, Gennette Gill,

Brian Greskamp, C. Richard Ho, Douglas J. Ierardi, Lev Iserovich, Jeffrey

S. Kuskin, Richard H. Larson, Timothy Layman, Li-Siang Lee, Adam K.

Lerer, Chester Li, Daniel Killebrew, Kenneth M. Mackenzie, Shark Yeuk-

Hai Mok, Mark A. Moraes, Rolf Mueller, Lawrence J. Nociolo, Jon L. Peti-

colas, Terry Quan, Daniel Ramot, John K. Salmon, Daniele P. Scarpazza,

U. Ben Schafer, Naseer Siddique, Christopher W. Snyder, Jochen Spengler,

Ping Tak Peter Tang, Michael Theobald, Horia Toma, Brian Towles, Ben-

jamin Vitale, Stanley C. Wang, and Cliff Young. “Anton 2: Raising the

Bar for Performance and Programmability in a Special-purpose Molecular

Dynamics Supercomputer”. In: Proceedings of the International Conference

for High Performance Computing, Networking, Storage and Analysis. SC

’14. New Orleans, Louisana: IEEE Press, 2014, pp. 41–53. isbn: 978-1-4799-

5500-8. doi: 10.1109/SC.2014.9.

https://doi.org/10.1109/SC.2014.9

140

[109] Siddhartha and Nachiket Kapre. “eBSP: Managing NoC traffic for BSP

workloads on the 16-core Adapteva Epiphany-III processor”. In: 2017 De-

sign, Automation & Test in Europe Conference & Exhibition (DATE).

IEEE. 2017, pp. 73–78.

[110] Siddhartha and Nachiket Kapre. “Heterogeneous Dataflow Architectures

for FPGA-based Sparse LU Factorization”. In: 2014 24th International

Conference on Field Programmable Logic and Applications (FPL). IEEE.

2014, pp. 1–4.

[111] Siddhartha and Nachiket Kapre. “Hoplite-Q: Priority-Aware Routing in

FPGA Overlay NoCs”. In: 2018 26th International Symposium on Field-

Programmable Custom Computing Machines (FCCM). May 2018.

[112] Wilson Snyder. “Verilator and SystemPerl”. In: North American SystemC

Users’ Group, Design Automation Conference. 2004.

[113] Hayden Kwok-Hay So and Cheng Liu. “FPGA overlays”. In: FPGAs for

Software Programmers. Springer, 2016, pp. 285–305.

[114] Richard M Stallman. Using GCC: the GNU compiler collection reference

manual. Gnu Press Boston, 2003.

[115] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen,

Andrew Putnam, Ken Michelson, Mark Oskin, and Susan J Eggers. “The

wavescalar architecture”. In: ACM Transactions on Computer Systems (TOCS)

25.2 (2007), p. 4.

[116] M.B. Taylor. “A Landscape of the New Dark Silicon Design Regime”. In:

Micro, IEEE 33.5 (Sept. 2013), pp. 8–19. issn: 0272-1732. doi: 10.1109/

MM.2013.90.

[117] Michael B Taylor. “A landscape of the new dark silicon design regime”. In:

IEEE Micro 33.5 (2013), pp. 8–19.

[118] Michael B Taylor. “Is dark silicon useful? Harnessing the four horsemen

of the coming dark silicon apocalypse”. In: Design Automation Conference

(DAC), 2012 49th ACM/EDAC/IEEE. IEEE. 2012, pp. 1131–1136.

[119] Sanjeev Thiyagarajan. “Reducing memory space for completely unrolled

LU factorization of sparse matrices”. MA thesis. University of Cincinnati,

2001.

https://doi.org/10.1109/MM.2013.90
https://doi.org/10.1109/MM.2013.90

141

[120] James E. Thornton. “Parallel Operation in the Control Data 6600”. In:

Proceedings of the October 27-29, 1964, Fall Joint Computer Conference,

Part II: Very High Speed Computer Systems. AFIPS ’64 (Fall, part II).

San Francisco, California: ACM, 1965, pp. 33–40. doi: 10.1145/1464039.

1464045. url: http://doi.acm.org/10.1145/1464039.1464045.

[121] Robert M Tomasulo. “An efficient algorithm for exploiting multiple arith-

metic units”. In: IBM Journal of research and Development 11.1 (1967),

pp. 25–33.

[122] Stephen M Trimberger. “Three ages of FPGAs: A retrospective on the

first thirty years of FPGA technology”. In: Proceedings of the IEEE 103.3

(2015), pp. 318–331.

[123] J. Tyhach, M. Hutton, S. Atsatt, A. Rahman, B. Vest, D. Lewis, M. Lang-

hammer, S. Shumarayev, T. Hoang, A. Chan, D. M. Choi, D. Oh, H. C.

Lee, J. Chui, K. C. Sia, E. Kok, W. Y. Koay, and B. J. Ang. “Arria 10

device architecture”. In: 2015 IEEE Custom Integrated Circuits Conference

(CICC). Sept. 2015, pp. 1–8.

[124] Anuj Vaishnav, Khoa Dang Pham, and Dirk Koch. “A survey on FPGA vir-

tualization”. In: 2018 28th International Conference on Field Programmable

Logic and Applications (FPL). IEEE. 2018, pp. 131–1317.

[125] John Von Neumann. “First Draft of a Report on the EDVAC”. In: IEEE

Annals of the History of Computing 4 (1993), pp. 27–75.

[126] Erwei Wang, James J Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu,

Wayne Luk, Peter YK Cheung, and George A Constantinides. “Deep Neural

Network Approximation for Custom Hardware: Where We’ve Been, Where

We’re Going”. In: arXiv preprint arXiv:1901.06955 (2019).

[127] Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. “HopliteRT: An effi-

cient FPGA NoC for real-time applications”. In: Field Programmable Tech-

nology (ICFPT), 2017 International Conference on. IEEE. 2017, pp. 64–

71.

[128] Saud Wasly, Rodolfo Pellizzoni, and Nachiket Kapre. Worst Case Latency

Analysis for Hoplite FPGA-based NoC. Tech. rep. 2017.

https://doi.org/10.1145/1464039.1464045
https://doi.org/10.1145/1464039.1464045
http://doi.acm.org/10.1145/1464039.1464045

142

[129] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi.

The RISC-V Instruction Set Manual. Volume 1: User-Level ISA, Version

2.0. Tech. rep. California University Berkeley Department of Electrical En-

gineering and Computer Sciences, 2014.

[130] Matt Weber. “Arbiters: design ideas and coding styles”. In: SNUG Boston

(2001).

[131] Stephen Weston, James Spooner, Sébastien Racanière, and Oskar Mencer.

“Rapid computation of value and risk for derivatives portfolios”. In: Con-

currency and Computation: Practice and Experience 24.8 (2012), pp. 880–

894.

[132] Henry Wong, Vaughn Betz, and Jonathan Rose. “High Performance In-

struction Scheduling Circuits for Out-of-Order Soft Processors”. In: Field-

Programmable Custom Computing Machines (FCCM), 2016 IEEE 24th An-

nual International Symposium on. IEEE. 2016, pp. 9–16.

[133] Justin M Wozniak, Michael Wilde, and Ian T Foster. “Language features

for scalable distributed-memory dataflow computing”. In: Proc. Data-Flow

Execution Models for Extreme-Scale Computing at PACT (2014).

[134] Guiming Wu, Xianghui Xie, Yong Dou, Junqing Sun, Dong Wu, and Yuan

Li. “Parallelizing sparse LU decomposition on FPGAs”. In: Field-Programmable

Technology (FPT), 2012 International Conference on. 2012, pp. 352–359.

[135] Xilinx Inc. LogiCORE IP Floating-Point Operator v7.0 Product Guide.

2014. url: http : / / www . xilinx . com / support / documentation / ip _

documentation/floating_point/v7_0/pg060-floating-point.pdf.

[136] Xilinx Inc. Versal, the First Adaptive Compute Acceleration Platform. 2018.

url: www.xilinx.com/support/documentation/whitepapers/wp505-

versal-acap.pdf.

[137] I Xilinx. “Microblaze processor reference guide”. In: reference manual (2016).

[138] Huazhong Yang, Yu Wang, and Ling Ren. “GPU-Accelerated Sparse LU

Factorization for Circuit Simulation with Performance Modeling”. In: IEEE

Transactions on Parallel and Distributed Systems 99 (2014), p. 1.

[139] Laurence Tianruo Yang. “The improved CGS method for large and sparse

linear systems on bulk synchronous parallel architectures”. In: Algorithms

and Architectures for Parallel Processing, 2002. Proceedings. Fifth Interna-

tional Conference on. IEEE. 2002, pp. 232–237.

http://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf
http://www.xilinx.com/support/documentation/ip_documentation/floating_point/v7_0/pg060-floating-point.pdf
www.xilinx.com/support/documentation/whitepapers/wp505-versal-acap.pdf
www.xilinx.com/support/documentation/whitepapers/wp505-versal-acap.pdf

143

[140] AN Yzelman and Rob H Bisseling. “An object-oriented bulk synchronous

parallel library for multicore programming”. In: Concurrency and Compu-

tation: Practice and Experience 24.5 (2012), pp. 533–553.

[141] Qiaoshi Zheng, Nathan Goulding-Hotta, Scott Ricketts, Steven Swanson,

Michael Bedford Taylor, and Jack Sampson. “Exploring energy scalability

in coprocessor-dominated architectures for dark silicon”. In: ACM Trans-

actions on Embedded Computing Systems (TECS) 13.4s (2014), p. 130.

[142] Stéphane Zuckerman, Joshua Suetterlein, Rob Knauerhase, and Guang R

Gao. “Using a codelet program execution model for exascale machines: posi-

tion paper”. In: Proceedings of the 1st International Workshop on Adaptive

Self-Tuning Computing Systems for the Exaflop Era. ACM. 2011, pp. 64–

69.

	Contents
	List of Acronyms
	List of Figures
	List of Tables
	1 Introduction
	1.1 Contributions
	1.2 FPGAs Today
	1.2.1 Arria 10 FPGA

	1.3 Why Dataflow?

	2 Background
	2.1 What are directed acyclic graphs?
	2.2 High-Level Synthesis
	2.3 FPGA Overlay Architectures
	2.4 Dataflow Computing
	2.4.1 Dataflow Computing: Early Years (pre 2000s)
	2.4.2 Dataflow Computing Today (2000s – Present)

	2.5 Arria 10 AX115S FPGA
	2.5.1 Resource Balance

	3 Dataflow Soft-Processor Design
	3.1 Introduction
	3.2 Contributions
	3.3 Background
	3.3.1 The Good, The Bad, and The Ugly
	3.3.2 Out-of-order execution
	3.3.3 OoO in FPGA-based soft-processors

	3.4 Dataflow Coprocessor Overlay (DaCO)
	3.4.1 Processing Element (PE)
	3.4.2 Crossbar design in the PSNoC

	3.5 Methodology
	3.5.1 Experimental Setup

	3.6 Results
	3.6.1 Resource Utilization
	3.6.2 Overall Performance
	3.6.3 Effect of criticality-aware scheduling
	3.6.4 Scheduler Efficiency
	3.6.5 Effect of clustering
	3.6.6 Performance vs Resource Utilization

	3.7 Future Work
	3.8 Conclusions
	3.9 Publications

	4 Network on Chip Design
	4.1 Introduction
	4.2 Background
	4.2.1 Network on chip basics
	4.2.2 Existing NoC Routers for FPGAs
	4.2.3 Hoplite NoC
	4.2.4 Hoplite Limitations
	4.2.5 Quality of Service (QoS) in existing routers
	4.2.6 Contributions

	4.3 Priority-Aware Hoplite
	4.3.1 Priority-Aware Routing Function
	4.3.2 Static Priority
	4.3.3 Dynamic Priority
	4.3.4 Buffering
	4.3.5 Hoplite-B variants
	4.3.6 Summary of Hoplite-Q* Adaptations

	4.4 Methodology
	4.4.1 RTL Implementation and Simulation
	4.4.2 Benchmarks

	4.5 Results
	4.5.1 Baseline Calibration Tests
	4.5.2 Effect of Buffering (Hoplite-B)
	4.5.3 Effect of Priority (Hoplite-Q*)
	4.5.4 Priority-Tag Bitwidth
	4.5.5 Throughput vs average latency
	4.5.6 Token Dataflow

	4.6 Future Work
	4.7 Conclusions
	4.8 Publications

	5 Software Optimizations
	5.1 Introduction
	5.2 Background
	5.2.1 Sparse Matrix Factorization

	5.3 Recursive Substitution (Loop-Unrolling)
	5.3.1 Motivating Example
	5.3.2 Recursive Substitution
	5.3.3 Reassociation

	5.4 Criticality-Aware Reassociation
	5.4.1 Motivating Example
	5.4.2 Huffman-based criticality-aware repacking

	5.5 Fanout Decomposition
	5.5.1 Motivating Example
	5.5.2 Implementation

	5.6 Methodology
	5.6.1 Old Hardware Design
	5.6.2 Software Setup
	5.6.3 Experiments

	5.7 Results
	5.7.1 Notation
	5.7.2 Speedups over CPU
	5.7.3 Resource Scaling
	5.7.4 Empirical Error Analysis
	5.7.5 Floating-Point Efficiency
	5.7.6 Case for Homogeneous Design
	5.7.7 Case for Selective Optimization
	5.7.8 Related Work

	5.8 Future Work
	5.9 Conclusions
	5.10 Publications

	6 Conclusion
	6.1 Final Contributions
	6.2 Lessons
	6.3 Future Work

	Bibliography

