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Abstract—
The Hoplite FPGA overlay network-on-chip routes packets

in an oblivious manner without considering application priority
when computing packet paths. This degrades performance
across all priority classes of traffic by allowing them to interact
and mix in the network in an arbitrary manner. However, real-
world FPGA systems often need to route traffic from mixed-
priority, multi-application workloads such as multi-tenant
cloud deployments. Such scenarios require NoC resources to
be allocated in a priority-aware manner to deliver expected
Quality-of-Service outcomes to the FPGA applications. In
this paper, we introduce Hoplite-Q, a lightweight router that
exploits choice during routing to deliver improved outcomes
for higher priority traffic on the NoC. We achieve this by (1)
adding priority bits to the packet being routed, (2) enhancing
routing choice in the switch with the addition of a single buffer,
and (3) augmenting the routing function to use the buffer and
priority tags in static and dynamic manner. Overall, the use
of buffers and priority-aware routing improves throughput of
high-priority applications by up to 1.8×, worst-case latency by
1.5–3.9×, while increasing the FPGA area utilization for the
NoC by 1.3–3.8× on the Altera Arria 10 AX115S FPGA board.

I. INTRODUCTION

FPGA-based Network-on-Chip (NoC) solutions can pro-
vide high-bandwidth and low-latency connectivity between
hardware components such as IP blocks and system-level
interfaces such as PCIe endpoints, DRAM controllers, or
Ethernet blocks on the FPGA in a resource-shared and cost-
effective manner. NoCs can also be baked into accelerators
as a communication fabric for routing traffic between spatial
FPGA datapaths. In the datacenter domain, we foresee
large NoC-enabled FPGA chips hosting multiple applica-
tions from different tenants with varying communication
constraints on the same FPGA chip. In such scenarios,
delivering different levels of service based on a cost-efficient
policy could be desirable [16]. For example, NoCs being
utilized in a shared environment could prioritize traffic based
on a service tier and/or request priority of the customer.

Lightweight FPGA overlay NoCs such as Hoplite [8]
provide an FPGA-optimized solution for composing large
chip-wide systems scaling to thousands of processing el-
ements and system interface ports. Hoplite is known to
outperform competing FPGA NoCs such as CMU Con-
nect [13] and Penn Split-Merge [6] designs by 1.5× in
throughput (packets/cycle) while being 20–25× smaller in
size, and 3–5× faster clock frequency. Hoplite is able to

deliver this outcome through the use of deflection routing
and a lean bufferless design. However, this low cost comes
at a price: high deflection routing penalty for a single
application, and an inability to discriminate between traffic
from multiple distinct applications. In this paper, we ad-
dress these issues by introducing Hoplite-Q, a priority-aware
NoC router adapted from the original Hoplite router with
support for different Quality-of-Service (QoS) outcomes for
different traffic classes. To enhance routing choice in the
Hoplite router, we add a single packet buffer inside the
existing deflection router design. The buffer and associated
multiplexing circuitry is crucial to unlocking the complete
features of priority-aware routing in Hoplite. Our Hoplite-
Q design then exploits this choice by using a suitably-
designed priority driven routing function. The engineering
considerations include choosing how to design the routing
function to deliver the discrimination required between the
different traffic classes.

The contributions in this paper are as follows:
• New design refinements of the Hoplite NoC router

with a single buffer (Hoplite-B), and a fully-featured
priority-aware design (static: Hoplite-Q, dynamic:
Hoplite-Q*).

• Evaluation of router designs on various statistical and
real-world benchmarks to quantify improvements in
throughput, latency and cost.

• Evaluation of mixed-priority, multi-application work-
loads and measurement of associated QoS outcomes
for statistical and real-world benchmarks.

II. BACKGROUND

A. Hoplite NoC

The Hoplite [8] deflection router is a low-cost, FPGA-
friendly NoC router that uses deflection routing coupled
with an unidirectional 2D torus topology. It routes packets
using a dimension-ordered routing (DOR) strategy, where
packets are routed in the west-to-east direction (X-plane)
first, before being routed along the north-to-south direction
(Y-plane). The deflection router is also a bufferless switch
design – packets are deflected, instead of buffered, whenever
there is contention for a routing path inside a switch in any
given cycle. This has a few implications: while the design
is lightweight in LUT cost, packets can suffer from high



communication latencies due to deflections. Despite this,
deflection routers can be competitive for latency-tolerant,
throughput-sensitive real workloads, as their resource-light
design is desirable for scalability.

In Figure 1a, we show a high-level block diagram of the
Hoplite router. Packets can enter the router from three input
ports – the processing element (PE), west (W), and north
(N) – and can exit from two output ports – east (E) and
south (S). The S port is shared to deliver packets to the
PE and a separate valid signal distinguishes this scenario.
In the event of contention for an output port, the packet
at input PE is given the lowest priority, i.e. no packet is
accepted into the network from the PE in that cycle. If there
is contention for the S output port, from valid packets at N
and W input ports, then the N packet is always given routing
priority, while the W packet is deflected to the E output port.
This arbitration strategy trades off low packet latency for a
lightweight bufferless switch design. The Hoplite deflection
router is the baseline router design we build upon.

B. Related Work

Buffered routers ( [1], [9], [2]) have long supported
packet priorities to deliver QoS guarantees but are expensive
to implement on top of FPGA fabric. In contrast, a majority
of existing bufferless routers [3], [8], [10], [12] do not pay
sufficient attention to delivering varying QoS for mixed-
priority multi-application workloads. In fact, any priority-
aware arbitration rules, such as the Golden packet rule [3],
Silver packet rule [4] or Oldest-First priority scheme [10],
are designed to reduce the number of total deflections and
provide guarantees against livelock for the entire workload
rather than individual application outcomes. MinBD [4] uses
a side-buffer to reduce resource utilization and power costs
associated with buffering, which is similar to our buffering
strategies described later. Unlike the 4-flit side-buffer used
in MinBD, we use a 1-flit (1-packet) deep buffer to reduce
cost. HopliteRT [15] delivers QoS latency bounds with
minimal hardware modifications, but is also incapable of
distinguishing QoS demands across different priority bins.

III. PRIORITY-AWARE HOPLITE

Modern NoCs support a range of routing algorithms
which typically use destination address information to allow
deadlock-free traversals on the network. We can add priority
awareness to a NoC by simply adding additional priority
bits, and using those bits along with the destination address
bits to determine packet route. When used in buffered NoCs
like in [1], [11], the lower priority packets can simply wait
in the buffer a little longer. If we apply this naı̈vely to the
Hoplite NoC, we observe that the routing algorithm has
limited flexibility in making routing decisions due to the
low arity of the undirectional torus switches. Thus, we must
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Figure 1: Hoplite-Q switch organization with
enhancements. (1) Addition of priority bits in each packet,

(2) Addition of a buffer B to store deflected W and N
packets, (3) Enhanced choice during routing for selecting

between W, N, PE, and B input ports.

consider other adaptations to make priority-awareness more
amenable to the Hoplite NoC design.

In this section, we look at three main design consider-
ations to support priority awareness in Hoplite NoC: (1)
the design of a priority-aware routing function, (2) priority
assignment method that may be static at compile time, or
dynamic at runtime, and (3) introduction and sizing of the
buffer in the switch to boost routing choice. We perform a
careful cost-benefit analysis and quantify the effect of each
proposed change.

A. Priority-Aware Routing Function

The dimension-ordered routing (DOR) function in Hoplite
statically prioritizes N packets over W packets, while PE
packets have the least priority. To support priority-awareness,
at the very least, we must allow W packets to be able to
deflect N packets. This necessitates the addition of a N→E
turn in the switching crossbar (shown as the red turn in
Figure 1b). For this configuration, we can design a priority-
aware routing function on two NoC input ports – N and W.
The less critical packet is always deflected to the E output
port. Under this model, packets at PE are still given the least
importance, regardless of their priority, i.e. just like Hoplite.

A fully-featured priority-aware router should be able to
prioritize among all incoming packets regardless of their
port of origin. Packet priority should be the sole merit
in deciding packet routes. To alleviate the possibility of
continually blocking the PE packet, we add a buffer in the
router to hold N or W contending packets (shown in blue
in Figure 1b), and allow the PE packets an opportunity to
enter the NoC instead. We then adjust the routing function
to consider four inputs at N, W, PE and B ports. With
deflection-routed NoCs, the addition of such a buffer must
be done with care as high buffering costs were the key
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motivating factor behind the bufferless design of Hoplite.
Our experiments show that a single buffer location delivers
most of the benefits of a deeply buffered design, while
increasing design cost modestly. We show a high-level view
of the adaptations required to the original Hoplite NoC in
Figure 1b (shown as blue multiplexers and registers).

Next, we must address two engineering decisions: (1) how
do we update the packet priority bits, and (2) how do we
determine which packets get to use the buffer. We answer
these questions in the next three subsections.

B. Static Priority

For FPGA applications where communication pattern is
known at compile time, we can identify priority classes at
compile time. These are static priority bits that do not change
value as they traverse the NoC.
• For applications with dataflow-type dependencies, the

compute structure (dependency graph) can be extracted
at compile time. We can run traditional slack analysis
algorithms on these applications to determine the priority
of each edge (or packet) in the graph. Such analysis
reveals the critical paths in the application that must be
prioritized for faster completion.
• For applications with no dataflow dependencies, such

as Bulk-Synchronous Parallel workloads, there are no
dependency chains or critical paths in the design. Instead,
a Manhattan-distance heuristic can be used to estimate
priority. A packet that must traverse a longer source-to-
sink route is likely to suffer from more deflections at
runtime.
• In multi-application scenarios, we assign priority to

packets based on the quality of service desired by each
application. In the extreme case, each application is as-
signed its own unique priority class. For example, if a 6-
bit priority tag is used for two priority classes, packets in
the lower and higher classes are assigned a priority value
within {0,31} and {32,63} respectively. We focus on these
mixed-priority multi-application scenarios for evaluation
of the priority-aware Hoplite-Q router design.
Resource Impact: The resource impact of this design is

the addition of P extra bits of priority wiring throughout
the NoC. The ideal value of P will depend on system size,
number of critical paths in the application, and number of
applications using the NoC.

While this is a start, static priority alone is insufficient.
Packets may get trapped in the buffer B and never have
higher priority than any other packet seen thereafter. Static
priority assignment may also lead to livelocks where packets
with lower priority are deflected in perpetuity. Apart from
livelocks, static priority does not account for NoC conges-
tion effects and other dynamic events in the system. This
motivates us to consider a dynamic adaptation to the priority
function discussed next.

C. Dynamic Priority

For dynamic priority support, we explore the following
two implementation strategies:
• We can increment packet priority on each deflection to

account for the victimization suffered by a packet in the
NoC. Thus, low-priority packets at injection can eventu-
ally attain high enough priority to exit the network. These
low priority packets occupy valuable network capacity
and should also be removed from the network to free up
resources.
• We can also increment packet priority on each hop to

account for the true age of a packet in the NoC. From
our preliminary experiments, however, we found that this
strategy is too aggressive and requires too many priority
bits in the packet.
Overall, deflection-based priority updates result in better

utilization of NoC resources and prevent denial-of-service
(DoS) to lower priority packets. Dynamic priority updates
are also applied to the packets waiting in the buffers so
that packets do not get trapped in the buffers forever. When
dynamic priority update support is enabled in Hoplite-Q, we
denote that as Hoplite-Q* in this paper.

Resource Impact: The resource impact of this design is
the introduction of P-bit adders in each router for all packets
(outgoing links and buffer), and a potential increase in P to
account for NoC traffic behavior.

D. Buffering

As discussed earlier, we need to add a buffer to Hoplite to
increase the number of routing choices in the switch. This
increased choice comes at the cost of ALMs and FFs to
implement the buffer, and a 2:1 multiplexer for writing to
the buffer. We empirically observe a depth of 1 to offer
the best balance between cost increase and performance
improvements. Packets will enter the buffer in the event
of NoC conflict where two packets desire the same output
port. Packets will leave the buffer when their priority is
higher than other packets at the router. We also support
buffer redirection, where a low-priority packet in a buffer
is forcibly ejected to allow a higher-priority packet to be
buffered instead of suffering a deflection. Redundant routes,
such as PE→B are also filtered out to ensure that the buffer
is utilized efficiently.

With dynamic priority, we can ensure that waiting packets
will eventually acquire sufficiently high priority to make
progress in the NoC. Even in the absence of priority, the
presence of a buffer can mitigate the effect of deflection
penalties. If the injection rates in the NoC are moderate,
the occasional buffering event can avoid the long deflection
round-trips in the ring and boost performance. To separate
the effect of buffering from priority, we consider a single
buffer router (Hoplite-B) design, and compare its perfor-
mance and area tradeoffs against the priority-aware Hoplite-
Q(*) designs. In Hoplite-B, whenever there is contention for

3



the S port by packets at N and W, the packet at W is buffered.
Since there is no priority-aware routing support in Hoplite-B,
the priority of injection ports is fixed to N > W > B > PE,
and N→E turns are not supported. A buffered packet in
Hoplite-B would exit as soon as the S port is available.

Finally, the extra resources used by Hoplite-Q could also
be theoretically used to create deeper buffers or replicated
Hoplite channels. We test two new implementations to
quantify these tradeoffs: (1) Hoplite-2B, which has a 2-deep
buffer, and (2) Hoplite-2×, which is simply two identical
and independent Hoplite channels.

IV. METHODOLOGY

A. RTL Implementation and Simulation

We compile all RTL code for all router designs with Altera
Quartus Prime Standard Edition 16.0 targeting the Arria 10
AX115S device and generate post-fitting FPGA implementa-
tion metrics. We summarize the results in Table I. It is clear
that the design adaptations to Hoplite cost extra resources.
It is important to observe that the Hoplite-2× design which
replicates the NoC doubles both the ALM and wiring cost.
Hoplite-2B adds resources because of a larger buffer but
preserves wiring cost. Hoplite-Q and Hoplite-Q* require a
more complex arbitration function but are within 3–3.5× the
ALM cost of baseline Hoplite while keeping wiring costs
identical. As we will see later in Section V, the increase in
resource cost gives us the priority-awareness properties we
desire in our system.

We ran cycle-accurate simulations of the RTL using
Verilator [14], which generates fast C++ code from the
synthesizable RTL. Our C++ testbench can route traffic from
various synthetic patterns, as well as communication traces
from real-world workloads. For synthetic experiments, all
PEs were configured to inject 2k single-flit packets at vary-
ing injection rates from 1% (1 packet injection attempt every
100 cycles on average) to 100% (1 packet injection attempt
every cycle). We evaluated the performance of Hoplite-
Q(*) on multi-application traces which simulate multiple
instances of the application operating in different regions
of the NoC. We explored various NoC system sizes: 1×1
(single PE) to 16×16 (256 PEs) configurations. Each packet
carries a 32b payload and 8b address information along with

Table I: Routers Resource Utilization (ALMs), 8b priority

Switch Crossbar % Arbiter % Total

Hoplite 33 59 4 7 56
Hoplite-2× 72 60 10 8 121
Hoplite-B 34 43 8 10 80
Hoplite-2B 34 27 9 7 127

Hoplite-Q 40 22 108 61 178
Hoplite-Q* 40 19 127 59 215

Table II: Sparse matrix BSP benchmarks used in this paper

Benchmark Domain Nodes/Edges

bp1600
Simplex method basis matrix from the
Harwell-Boeing Collection 822/4.8k

mcca
Non-LTE (local thermodynamic equi-
librium) problem from astrophyics 180/2.7k

simucaddac
SPICE circuit simulation benchmark
for 90nm process technology 654/5.5k

lns511 Fluid flow modeling benchmark 511/2.8k

jpwh991
Computer random simulation of a cir-
cuit physics model 991/6k

add20 Circuit netlist of a 20-bit adder 2.4k/17k

P bits of priority information. Our experiments measured
in-flight NoC latency, source queueing time, total packet
latency, and sustained throughput metrics of the resulting
implementation. We quantify the effect of system size,
priority-tag bitwidth, static/dynamic priority-aware routing,
along with variations due to real-world datasets.

B. Benchmarks

We use sparse matrix-vector multiply (SpMV) bench-
marks from a variety of domains and express them as Bulk
Synchronous Parallel (BSP) [5] graphs. BSP is a well-known
parallel compute abstraction that represents computation
as a graph consisting of nodes (computation) connected
by edges (communication). A BSP graph is evaluated in
a synchronized lock-step fashion, where computation and
communication occur in distinct stages separated by a
global synchronization barrier. The NoC is utilized in the
communication phase of the BSP workload, where a large
number of packets are injected into the network and the
system waits for all deliveries before proceeding. Such
BSP applications are typically iterative applications that
converge to a solution, and communication optimizations
greatly influence program runtime. Table II summarizes the
properties and the application domains of our benchmarks.

V. RESULTS

In this section, we quantify the effect of priority-aware
routing on synthetic and bulk-synchronous workloads.

A. Baseline Calibration Tests

First, we compare the performance and cost trends of
baseline Hoplite against 1-deep (Hoplite-B) and 2-deep
(Hoplite-2B) buffers, along with a 2-channel (Hoplite-2×)
replicated solution.

In Figure 2, we quantify the resulting throughput and
latency performance of Hoplite, Hoplite-B, Hoplite-2B and
Hoplite-2× designs for UNIFORM RANDOM traffic at 64
PEs. Hoplite-B provides a significant improvement over Ho-
plite in throughput (1.5×) and latency performance (1.3×).
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Figure 3: Sustained throughput (millions of packets per
second) vs resource utilization (ALMs)

Hoplite-2B improves the throughput performance further but
only marginally (1.6× over Hoplite, 1.1× over Hoplite-2B).
Curiously, at an injection rate of ≥0.2, the average packet
latency delay is higher in Hoplite-2B than Hoplite-B, despite
higher sustained throughput. This effect can be attributed
to the longer waiting time in deeper buffers. Overall, both
Hoplite-B and Hoplite-2B improve NoC communication
throughput performance by up to 60% by mitigating the
deflection penalty suffered by packets. The dual-channel
NoC, Hoplite-2×, achieves the highest throughput of all
designs (1.7× over Hoplite), simply because packets can
now be routed over two channels, instead of one, in parallel.
The lack of buffers mean that packets still suffer long
deflections in each channel, and hence, the average packet
latency is close to that observed in single-channel Hoplite
NoCs. The NoC saturation point is also higher for all
three Hoplite-B, Hoplite-2B, and Hoplite-2× NoCs (0.2
packets/cycle/PE) when compared to baseline Hoplite NoC
(0.15 packets/cycle/PE).

In Figure 3, we illustrate the tradeoffs between perfor-
mance and logic resource utilization for these router designs
after considering post fitting metrics (ALM cost, and Fmax).
At 16×16 PEs, we observe a 70% improvement in through-
put for an additional 40% resource cost when comparing
Hoplite-B against baseline Hoplite NoC. Note that, for the
target Arria 10 FPGA, the ALM resource utilization is still
under 5% of the entire chip for the 16×16 NoC using
Hoplite-B routers. The same comparison between Hoplite-
2B and Hoplite-B highlights the diminishing performance

returns – only an additional 10% improvement in throughput
performance for 70% increase in resources used on the
FPGA. This is supported previously by trends observed in
[4], [7], where deeper buffers do provide improvements,
but the most significant improvement comes from just one
stage. Unlike [7] however, our solution is cheaper and does
not use any BRAM resources and shares a single buffer
location for holding deflected packets instead of a per-port
buffer. Hoplite-2× offers a solution in between Hoplite-
B and Hoplite-2B, but there is still an inefficient use of
logic resources – 7% improvement in performance for 60%
increase in resource utilization. Furthermore, increasing the
number of communication channels on the NoC requires
double the wiring resources that adds complexity to the
overall design for limited benefit. Overall, the lightweight
single buffer in Hoplite-B delivers the most effective balance
between resource usage and increased performance.

B. Effect of Buffering (Hoplite-B)
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Figure 4: Sustained throughput vs injection rate for Hoplite
and Hoplite-B under various traffic patterns on a 8×8 NoC.

In Figure 4, we compare the performance of a Hoplite
NoC to a Hoplite-B NoC under various statistical traffic
patterns for a system size of 8×8. The sustained throughput
of all traffic patterns improves by 1.2–2.5×. We make the
following observations:

The Hoplite-B router absorbs the deflections generated by
the Tornado pattern to deliver ≈2.4× improvement (1.4×
average) in overall sustained throughput. The Neighbour
traffic pattern generates fewer deflections as traffic travels
short distances. But even in this scenario, Hoplite-B, ab-
sorbs these deflections well and improves throughput by
1.3× across all injection rates. For the Transpose traf-
fic pattern, both Hoplite and Hoplite-B router NoCs have
similar throughputs. This is due to the presence of self-
communicating PEs, e.g. (0,0) → (0,0) or (1,1) → (1,1)
along the diagonal. However, the input PE port in the router
is always given the least routing priority, which means that
packets from these PEs contest for the shared exit/South port
and are unable to exploit the buffer. For the Bitrev, Local
and Complement traffic patterns, we observe up to 1.3–1.5×
improvements in throughput at high injection rates.
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(a) Hoplite (b) Hoplite-B

(c) Hoplite-Q (d) Hoplite-Q*

Figure 5: Packet delay distribution on 8×8 NoC for
4-application synthetic workload across various Hoplite

NoC variants at 50% injection rate.

C. Effect of Priority (Hoplite-Q)

Next, we quantify the effect of priority-aware routing
on a 4-application synthetic workload (UNIFORM RANDOM
traffic, 32k packets) by measuring packet delay distributions
in each priority class. Each packet is encoded with an 8b
priority tag such that packets in priority class 0, 1, 2 and
3 are assigned a priority value within {0,63}, {64,127},
{128,191}, and {192,255} respectively. 8b adders are used
to increment the priority value on deflection in Hoplite-Q*,
and any overflow is prevented. In Figure 5, we see the results
of this experiment.

We track the number of extra cycles spent in the net-
work by each packet due to deflections (Cyclesobserved -
Cyclesideal). Here, ideal cycles are computed simply as
the Manhattan distance in absence of congestion. We then
highlight the worst-case latency in each bin to quantify the
observed QoS outcomes.
• In Figure 5a, the Hoplite router produces quantized levels

of delay that are in multiples of 8. This is due to the 8×8
system size, and associated 8-cycle deflection in the X-
plane. The worst-case latency delay suffered by a packet is
112 cycles, which indicates 14 deflections. We observe a
uniform distribution of packet delay cycles in each priority
bin as baseline Hoplite is oblivious to application priority.
• In contrast, Hoplite-B results in Figure 5b show a

smoother packet delay distribution as packets may wait
in the buffer upon deflection. The worst-case latency has
improved to 82 cycles, but the packet delay distribution
is still uniform across all priority bins.
• The Hoplite-Q NoC delays shown in Figure 5c indicate

a priority-sensitive delay distribution across priority bins.
The higher-priority bin now sees a worst-case delay of
only 13 cycles while the least-priority bin sees a worst-
case delay of up to 1024 cycles. Thus, better performance
in the higher priority bin comes at the expense of lower

performance in other bins. This packet delay distribution
highlights the need for a dynamic priority-update feature
that mitigates the observed aggressive starvation of low-
priority packets.
• The Hoplite-Q* router design, shown in Figure 5d,

offers a more balanced solution for this experiment by
accounting for dynamic conditions in the NoC. The worst-
case latency suffered by a packet in the highest-priority
bin is now 14 cycles while that in the lowest-priority bin is
a more reasonable 141 cycles. This marginally sacrifices
the performance of the higher priority bins for balanced
outcomes for other bins.

D. Priority Tag Bitwidth

One of the key design considerations is choosing the
number of bits allocated to the priority field in the packet,
especially with dynamic priority-updates in Hoplite-Q*. We
now experiment with mixed-priority, multi-application BSP
workloads where a varying number of applications are
sharing the compute and communication resources available
on the NoC. For fairness, we take a single real-world BSP
application (bp1600) and replicate it multiple times while
assigning a different priority class to each replicated copy.
Figure 6 shows the throughput improvements observed on
the top-priority application with Hoplite-B, Hoplite-Q, and
Hoplite-Q* NoC when compared to baseline Hoplite.

As expected, since Hoplite-B does not route packets by
priority, the performance of the top-priority application is
similar to all applications in other priority classes. Increas-
ing the number of bits (P) in the priority tag also has
no noticeable effect on the performance. As the number
of applications are increased, there is more congestion in
the network and each router achieves its peak sustained
throughput. Hoplite-B achieves a peak 1.4–1.5× speedup
over Hoplite (see Figure 6a), which is expected and cor-
roborated by results seen in Figure 2 earlier). Hoplite-Q is
able to reserve and prioritize resources better for the top-
priority application packets, and hence, deliver a higher peak
of 1.7–1.8× throughput performance over Hoplite. Once
again, since Hoplite-Q does not update packet priorities,
there is no noticeable effect on increasing the bitwidth of
the priority tag, i.e. we can remove the dynamic tag and
choose P bits such that number of desired priority classes is
≤ 2P . Hoplite-Q* demonstrates a more noticeable change
in performance with varying P. At small P, the numerical
range of the dynamic tag is not large enough, such that
deflected packets from the lower-priority classes get quickly
promoted to higher priority classes and limit the perfor-
mance advantage reserved for the top-priority application.
At large P, the effect of the dynamic priority-updates is
diminished, as it takes many more deflections for packets to
get promoted across different priority classes. This results
in more low-priority packets getting stuck for long periods
in the NoC, which takes up routing resources (e.g. buffers)
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Figure 6: Observed throughput improvements over 8×8 Hoplite NoC for the application in the top-priority class, tested
over varying number of priority classes (C = 1→16), and total bitwidth of the priority tag (P = 1→16).

and, on the whole, throttles the performance of the NoC.
The design optimum seems to be at P = 8 for the range of
priority classes tested in our experiments, and is likely to
be larger as we scale further up beyond 16 priority classes.
When compared to Hoplite-B and Hoplite-Q, Hoplite-Q*
also delivers a slightly higher peak throughput performance
of 1.8–1.9× over Hoplite at P = 8.

E. Throughput vs Average Latency Trends
In this subsection, we look more closely at the effect of

priority-aware routing on packets from all priority classes.
All results detailed in this subsection, unless otherwise
stated, are evaluated with the bp1600 BSP benchmark. All
latency measurements visualized in this section include both
injection queue latency and packet in-flight latency.
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Figure 7: Average throughput of application in each
priority class on 8×8 NoC, where C = 16 and P = 8.

Figure 7 shows the effect each router has on the through-
put of applications in each priority class (labeled C0 to C15,
in increasing order of priority). As expected, Hoplite and
Hoplite-B NoCs produce a fairly uniform trend across all
priority classes since they do not have any priority-aware
routing features. Hoplite-Q produces a stark upward trend
in the throughput performance from C0→C15. Hoplite-Q*
distributes this effect slightly to produce a better balanced
throughput performance across all priority bins. When com-
paring throughput performance between C0 and C15, there

is a ≈60% improvement in throughput for the top-priority
application. This throughput performance is supported by
Figure 8 as well, where we track and compute the average
packet latency suffered by packets in each priority class.
Here, the quality of service provided to top-priority packets
(C15) can be almost 4× better than lowest-priority packets
(C0). Note that an overwhelmingly large proportion of the
routing latency is due to the injection queue at the PE input,
and hence, the eventual throughput improvements across
priority bins saturate at smaller values.
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Figure 8: Average latency suffered by packets in each
priority class for 8×8 NoC, where C = 16 and P = 8.

Figure 9 shows the throughput and packet latency per-
formance of the top-priority application for different bench-
marks. Each benchmark has its own communication pattern,
and hence has a varying response to Hoplite-Q enhance-
ments. Since larger benchmarks have more communication
edges, Hoplite-Q(*) has better opportunities to improve
average latency of packets in the top-priority workload.

Finally, in Figure 10, we observe that the gap in through-
put performance of Hoplite and Hoplite-B routers increases
as system size increases. This is because the deflection
penalty at large system sizes impacts performance more
severely. The scaling trend of Hoplite-Q(*) demonstrates that
the router does not sacrifice any advantages of Hoplite-B, but
instead utilizes all available resources efficiently to deliver
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Figure 9: Average throughput and packet latency of
application in top-priority class across different BSP

benchmarks for an 8×8 NoC, where C = 16 and P = 8.
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Figure 10: Average throughput and packet latency for
top-priority application vs overlay size. C = 16, P = 8.

desirable QoS outcomes for the top-priority application.

VI. CONCLUSIONS

We introduce Hoplite-Q, a lightweight FPGA-friendly
priority-aware NoC router capable of exploiting application
priority when routing communication workloads. We modify
the Hoplite FPGA NoC router by adding a single buffer to
enhance routing choice and redesign the routing function to
use the priority bits in each packet when determining packet
paths. Our proposed design improves throughput of the top-
priority workload in the mix by 1.3–1.8×, and worst-case
latency by 1.5–3.9×, while increasing FPGA area cost by
3.8×. Hoplite-Q paves the way for a tiered model in multi-
tenant datacenter FPGA deployments, where traffic from
different tenants can be serviced differently based on the
Quality-of-Service (QoS) desired.
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