
GraphMMU: Memory Management Unit
for Sparse Graph Accelerators

Nachiket Kapre1, Han Jianglei1, Andrew Bean2, Pradeep Moorthy1, and Siddhartha1

1School of Computer Engineering, Nanyang Technological University, nachiket@ieee.org
2Department of Electrical and Electronic Engineering, Imperial College London, andrew.bean06@imperial.ac.uk

Abstract—
Memory management units that use low-level AXI descriptor

chains to hold irregular graph-oriented access sequences can
help improve DRAM memory throughput of graph algorithms
by almost an order of magnitude. For the Xilinx Zedboard, we
explore and compare the memory throughputs achievable when
using (1) cache-enabled CPUs with an OS, (2) cache-enabled
CPUs running bare metal code, (2) CPU-based control of FPGA-
based AXI DMAs, and finally (3) local FPGA-based control of
AXI DMA transfers. For short-burst irregular traffic generated
from sparse graph access patterns, we observe a performance
penalty of almost 10× due to DRAM row activations when
compared to cache-friendly sequential access. When using an
AXI DMA engine configured in FPGA logic and programmed in
AXI register mode from the CPU, we can improve DRAM perfor-
mance by as much as 2.4× over naı̈ve random access on the CPU.
In this mode, we use the host CPU to trigger DMA transfer by
writing appropriate control information in the internal register of
the DMA engine. We also encode the sparse graph access patterns
as locally-stored BRAM-hosted AXI descriptor chains to drive the
AXI DMA engines with minimal CPU involvement under Scatter
Gather mode. In this configuration, we deliver an additional 3×
speedup, for a cumulative throughput improvement of 7× over
a CPU-based approach using caches while running an OS to
manage irregular access.

I. INTRODUCTION

Important graph problems in scientific computing and engi-

neering, such as sparse matrix factorization, learning on con-

textual knowledge-bases, pagerank-style indexing, social net-

work analytics, and neural network simulations are challenging

problems for modern computing architectures. A common pat-

tern in these applications involves repetitive, irregular access

to large, sparsely distributed graph structures. For small graphs

that fit the on-chip memory capacity of modern processors, we

get fast random access even for irregular address sequences.

However, larger graph structures that do not fit the cache must

be stored off-chip. Accessing these structures results in high

cache miss rates when trying to support such irregular accesses

thereby lowering performance. This is inevitable as the access

patterns have neither spatial nor temporal locality. However,

we know that the underlying DRAM interfaces are capable of

supporting much faster data rates. For example, on the Xilinx

Zedboard, when accessing a graph with 32M nodes and edges,

the observed random-access DRAM throughput can drop to as

low at 50 MB/s as opposed to the sustained sequential-access

throughput of ≈600 MB/s that is possible. While several

projects have explored customizing hardware accelerators for

ACP

AXI-GP

Processor FPGA

DRAM

ARMv7
32b CPU

DRAM
Controller

AXI-HP

L1/L2
Cache

A
M

B
A

 In
te

rc
on

ne
ct

FPGA
User
Logic

Fig. 1: An Abstract High-Level View of the Zedboard

communication infrastructure showing the AMBA

interconnect and AXI-HP, AXI-GP and ACP ports

graph algorithms, few have attempted to directly optimize the

memory access aspect of this problem. Careful scheduling and

low-level control of the DRAM controls can help us enhance

the observed throughputs even for irregular access.

Modern FPGA-based platforms, such as the Xilinx Zed-

board, often provide hard-IP blocks for DRAM controllers.

This is useful as it helps ensure fast low-latency access

that is otherwise trickier to manage when having to embed

the memory controllers directly in spatial FPGA logic. The

Zedboard platform also supports DMA IPs that can directly

co-ordinate and manage access to the DRAMs from FPGA

logic. On the Zedboard, we also have ARM co-processors that

can help manage control-oriented components of the algorithm

while being directly connected to the FPGA and the off-chip

DRAM. Data transfer from the ARM subsystem and the FPGA

is orchestrated using AXI (ARM bus standard) compatible

ports for high-throughput access. While it is possible to

provide cache-coherent access between the FPGA and the

ARM processor over the ACP port, there are direct AXI

links that bypass the ARM memory subsystem entirely when

feeding data to the FPGA logic. We hypothesize that we can

manage low-level AXI controllers that help support irregular

access patterns more efficiently than the alternatives. Hardened

DRAM controllers, fast ARMv7 CPU support and specialized

AXI-compatible DMA engines can be organized together to

provide a competent memory management solution for sparse

graph access. We first separate the graph data structure into

two components (1) addressing, and (2) data. By sequencing

2015 IEEE International Parallel and Distributed Processing Symposium Workshops

/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.101

113

2015 IEEE International Parallel and Distributed Processing Symposium Workshop

978-1-4673-7684-6/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPSW.2015.101

113

the addressing through the ARMv7 CPU, the AXI DMA

engines can be directed to effectively get data into the FPGA

logic for processing.

The contributions in this paper can be summarized as

follows:

1) The design and engineering of an AXI_DMA-based mem-

ory management unit (MMU) for supporting irregular

sparse access patterns.

2) Quantification of performance of our design and compari-

son with traditional cache-enabled approach for managing

memory access.

3) Low-level performance optimization of the DMA control

by directly constructing a chain of AXI descriptors that

capture the required access patterns.

II. BACKGROUND

In this section, we provide a brief overview of the Zedboard

platform, the graph memory storage format and a description

of the nature of memory access patterns on sparse graphs.

A. The Zedboard Platform

The Zynq Z7020 SoC [10] is an heterogeneous computing

system that combines an ARMv7 32b CPU with an Artix-

7 series FPGA accelerator on the same chip. It is a unique

platform ideally suited for embedded systems with power

and form factor restrictions. Zynq simplifies the FPGA de-

velopment flow by providing a high degree of IO integration

such as USB, Ethernet, HDMI and DRAM controllers by

directly implementing the interface IPs as hard blocks. Of

particular interest to this study are the embedded DRAM

controllers and a variety of fast AXI interfaces for data transfer

between the ARM CPUs and the FPGA logic regions. We

tabulate the data rates and capabilities of the various interfaces

available [10], [7] in Table I and represent the high-level

block diagram in Figure 1. For graph problems, we need

to support fast, low-latency access to the sparsely distributed

memory structures. Ideally, we want to fit all available data

fully on-chip. However, on-chip memory capacity is limited to

560KB of BlockRAMs (140×36Kb BRAMs) for the Zedboard

Z7020 chip. This is barely enough for most interesting graph

problems and even if we consider larger FPGAs, the peak on-

chip storage is still limited to a paltry few MBs of state. In

these circumstances, it is necessary to store the larger graph

structures off-chip in the DRAM. Compared to the on-chip

BRAM bandwidth of 0.3 TB/s, the off-chip DRAM bandwidth

is a miserly 4.2 GB/s (two-three orders of magnitude less).

Hence, it becomes important to consider possible low-level

DRAM optimizations that use the already-constrained band-

width as effectively as possible.

B. Graph Data Storage Format

We can formally define a graph (G) as a collection of

vertices (V) connected by edges (E), i.e. G = (V,E). When

each vertex in the graph is only connected to one or a

few neighbouring vertices, the graph is classified as being

sparse. Figure 2 shows a sparse graph with labeled nodes

Interface description Ports Bandwidth (GB/s)
Total Per-Port

AXI Accelerator Coherency Port (ACP) 1 2.4 2.4
AXI General Purpose (AXI-GP) 4 4.8 1.2
AXI High Performance Ports (AXI-HP) 4 9.6 2.4
External DDR memory 1 4.2 4.2
On-chip memory (OCM) 1 3.6 3.6

TABLE I: Theoretical Zedboard Interface Bandwidths

and edges (label is state on the node or edge). To store the

sparse graph structure in memory we can use an adjacency-

list based mechanism that only stores a list of edges that are

connected. For an optimized storage format, we typically use

the compressed sparse row (CSR) format [5] when the physical

structure is going to remain stable after construction of the

graph. In the CSR format, we store the graph in four arrays

as shown in Figure 3. The first array edge offset holds the

accumulated edge count for all nodes i (number of input edges

of node i is edge offset[i + 1] - edge offset[i]). We use

j = edge offset[i] as an offset to locate state belonging to

edges of node i in the array edge state. We can also locate the

data stored at the input nodes of node i through node index[j]
dereference. This format is commonly used for sparse matrix

B0

B1B2

B3

B4

A10A20

A30

A40

A12

A42

A32

A43

A14

Fig. 2: A representative sparse graph with five nodes and

nine edges, nodes labeled with node weights Bi, edges

labeled with edge weights Aij

M + 1 entries

N edges

M nodes

edge offset

edge state

node state

node index

A10

0

A12

2

A14

4

A20

0

A30

0

A32

2

A40

0

A42

2

A43

3

0 0 3 4 6 9

B0 B1 B2 B3 B4

Fig. 3: Memory layout of the sparse graph in Figure 2

114114

Function bsp(node state, edge state)

/* multiple BSP iterations */
11 foreach k = iterations do

/* process all nodes */
22 foreach i = nodes in graph do

/* evalute all input edges */
33 num edges = edge index[i+1]-edge index[i];
4 foreach j = input edges of node i do
55 /* compute read addresses */
6 node = i*sizeof(node state);
7 edge = (edge offset[node]+j)*sizeof(edge state);

/* compute on node/edge data */
8 f(node state[node],edge state[edge]);

/* implicit BSP barrier */

vector multiplication algorithms and can be repurposed with

little adaptation for other static graph structures.

C. Graph Algorithms

A key feature of most graph algorithms is the need to access

nodes and edges in an ordered manner. For graph algorithms

that obey the Bulk Synchronous Parallel (BSP) paradigm [8],

we iterate over the entire graph structure multiple times.

Each node and its neighbours are accessed in a loop-oriented

fashion shown in Function bsp. We know how to design spatial

datapaths for accelerating these kinds of graph algorithms [1],

[4], [6]. The underlying principle is to implement the node

and edge calculation logic as pipelined, streaming datapaths.

As these datapaths operate at high throughputs and can usually

be tiled across the FPGA fabric, we can process multiple node

and edge calculations per clock cycle yielding high processing

throughput. The key challenge in these spatial implementations

is our inability to either hold all active graph data on-chip or

to get data at high rates from off-chip DRAMs to keep the

hardware blocks busy with useful work.

For these scenarios, we can pre-compute the access se-

quences once and reuse them across all iterations. In this paper,

we focus on such algorithms where the access sequences

may be irregular and scattered. A cache-enabled CPU that

implements these loops will suffer high cache miss rates due to

the inability to fully predict the needed edge state[j] locations

and prefetch them in the cache ahead of time. In contrast,

an alternative approach that directs the DRAMs to load the

specified order of addresses will do much better.

The peak rated throughputs shown earlier in Table I do

not capture sustained behavior in the real world. We wrote

a simple microbenchmark modeled on the BSP code sketch

shown in Function bsp and compiled it using gcc-4.8.3
with the -O3 optimization. The goal was to stress the off-

chip DRAM memory access routines to quantify performance

of the Zedboard CPU. We show the sustained sequential access

bandwidth throughput possible on the Zynq CPU running an

embedded Linux OS when compared to scattered irregular

access (generated pseudo-randomly) in Figure 4. It is clear

that there is a performance gap of as much as 10× when

accessing memory in an irregular manner. Caching works

well at predicting sequential accesses resulting in fairly high

throughputs across access counts. Even random access rates

match the sequential access rates when the number of accesses

is in the low 1000s. While we do not expect to completely

close this 10× performance gap, we can certainly bypass the

cache to support enhanced operation by accessing the DRAM

controller in other ways.

0

200

400

600

1e+02 1e+04 1e+06 1e+08
Number of Accesses

B
an

dw
id

th
 (

M
B

/s
)

Random

Sequential

Fig. 4: Comparing Random and Sequential Access

Bandwidth on the Zedboard ARMv7 CPUs running Xillinux

III. DESIGN OF THE MEMORY MANAGEMENT UNIT

We design our MMU for graph operations by (1) using a

sparse graph storage encoding that separates structure from

data, (2) co-designing the manager using the AXI_DMA block

supported by a software driver running on the CPU, and (3)

optimizing the accesses through careful tuning of low-level

AXI operations. The MMU translates virtual graph node and

edge indices into appropriate low-level DMA operations.

A. Graph Storage

We organize the sparse graph storage along the lines of the

CSR format described earlier, but separate physical structure

from the data. As before we need to store edge offset and

node index to identify where the list of edges for each node

AXI-GP

User
LogicAXI-HP

Processor Logic

AXI-
Stream

DRAM

ARMv7
32b CPU

DRAM
Controller

AXI
DMA

Fig. 5: AXI DMA with direct control from CPU

115115

AXI-GP

User
LogicAXI-HP

Processor FPGA

AXI- Stream

DRAM

A

ARMv7
32b CPU

DRAM
Controller

AXI
DMA

AXI-GP

User
LogicAXI-HP

Processor FPGA

AXI- Stream

DRAM

ARMv7
32b CPU

DRAM
Controller

AXI
DMA

Fig. 6: AXI DMA flow for Register-mode operation

is located. This is useful for accessing node state values cor-

responding to the neighborhood of a given node. Such accesses

are useful when implementing sparse graph algorithms such

as shortest-path search that performs summarization operations

on the inputs to a node. In this case, we need to get fixed-size

items of data from a series of scattered addresses. Another

pattern of memory access involves accessing a contiguous

set of items that may be edge properties stored along an

edge to a node. For example, this information is stored in

a sequence as an edge state non-zero vector for the sparse

matrix vector multiplication algorithm. We encode the physical

address of the node and edge structures as base_addr and

the size of the data fetched from that address as length.

For our requirements, we consider a set of fixed-length
transfers from randomly distributed base_addr addresses.

While other DRAM-friendly forms are possible with larger

variable-length transfers, we focus on the harder shorter

fixed-length scenario.

B. AXI_DMA Manager

A common technique to maximize DRAM memory band-

width is to use DMA (Direct Memory Access) protocol. Xilinx

provides a few variations of DMA for different applications

e.g. VDMA for video traffic, and CDMA for shuffling data

between memory-mapped locations. For our graph access sce-

nario, we cannot use these off-the-shelf DMA engines. Instead,

we use the basic AXI_DMA IP core [9] and specialize it for

our purpose. Besides the capability of stream and memory

mapped data conversion, it also provides a high level control

and configuration over the DMA operation.

We use the AXI_DMA IP block, shown as organized in

Figure 5, as the basis of our memory throughput optimization

study. This IP block interfaces directly with the hardened

DRAM controller in the Zynq platform through the AXI-HP

interface. The IP can be customized to support a variable

XScuGic InterruptController;

void InterruptHandler (void) {

// clear interrupt
int tmp = Xil_In32(DMAREG_ADDR + 0x04);
tmp = tmpValue | 0x1000;
Xil_Out32(DMAREG_ADDR + 0x04, tmp);

// queue a new DMA operation
}

int main()
{

// Initialize AXI DMA
u32 tmp = Xil_In32(DMAREG_ADDR);
tmp = tmp | 0x1001;
Xil_Out32(DMAREG_ADDR, tmp);

// Initialize Interrupt
InitializeInterruptSystem();

// Perform DMA
for(i=0;i<GRAPH_ACCESS;i++) {

Xil_Out32(DMAREG_ADDR + 0x18,
base_addr[i]);

Xil_Out32(DMAREG_ADDR + 0x28,
length[i]);

// wait for interrupt
}

}

Fig. 7: Register-Mode AXI_DMA device driver

number of burst sizes to enable efficient use of the DRAM

bandwidth. For our irregular, short-burst access case, we

support burst sizes between 2–16. We can also configure

the irregular memory accesses as a sequence of bursts. The

IP supports programming through (1) register mode, and (2)

scatter-gather mode which we now discuss in more detail.

C. Register-Mode DMA

Register-mode control of the AXI_DMA block is initiated by

the ARMv7 CPU writing DMA-specific metadata to appropri-

ate internal registers of the DMA engine over the AXI-GP

control ports shown in Figure 6. The DMA engine interprets

this register state to extract the operational details of the DMA

task that we intend to perform. Each DMA operation involves

access from base_addr up to a sequence of length
bytes. The AXI_DMA block executes the DMA command over

the AXI-HP port that directly interfaces with the embedded

DRAM controller. Once the operation it competed, the engine

informs the CPU by signaling an interrupt. The host CPU

can the proceed to safely initiate another transfer. For a larger

series of accesses, the CPU supplies the appropriate set of

register commands to the DMA engine in the desired order.

In Figure 6, we show the two-step sequence that is itera-

tively evaluated for irregular access. For a graph traversal, we

show the pseudocode for the device driver in Figure 7. In the

first step, the host CPU sends the appropriate low-level AXI

commands to the AXI_DMA engine to kickstart the transfer.

In the second stage, the engine directly gets the requested data

116116

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

User
Logic

AXI-HP

Processor FPGA

AXI-Stream

DRAM

AXI-GP
AXI-HP

BRAMBRAM
ARMv7

32b CPU

DRAM
Controller

AXI DMA

BRAMBRAM

A

ARMv7
32b CPU

DRAM
Controller

AXI DMA

Fig. 8: AXI DMA flow for Scatter-Gather operation

from the off-chip DRAM through the AXI-HP port completely

bypassing the host CPU on-chip memories and delivers it to

the FPGA processing logic. This ability to avoid the caches

and memory subsystem of the CPU, while still using the CPU

to drive complex control-heavy series of DMA commands

is a unique strength of this execution mode. In this mode,

the need to wait for interrupts after each completed DMA

transaction can become a performance bottleneck. While the

register-mode flow is simple and straightforward, the need for

interrupt-locked progress can impose a performance penalty

on the accesses. We can remedy this using the scatter-gather

mode of operation instead.

D. Scatter-Gather DMA

Scatter-Gather DMA mode allows the AXI_DMA engine to

avoid requiring frequent assistance from the CPU and enables

somewhat independent operation. In this mode, instead of

programming the internal registers for each DMA transfer,

the CPU only needs to construct a one-off linked list of

AXI descriptor commands for the complete series of transfers.

This can be done once at the start and reused repeatedly for

iterative BSP-like graph algorithms. The descriptor chain is

XScuGic InterruptController;

struct axi_desc_t {
u32 next;
u32 base_addr;
u32 control;
u32 status;

};

void InitializeDescriptors() {

struct axi_desc_t axi_desc[GRAPH_ACCESSES];

for (i=0; i<GRAPH_ACCESSES; i++) {

// create an entry in linked list
axi_desc[i].base_addr = base_addr[i];
axi_desc[i].control = length[i];

Xil_Out32(BRAM_ADDR +
i*ALIGN + NXTDESC ,
axi_desc[i].next);

// copy other fields to BRAM
}

}

int main()
{

InitializeDescriptors ();

// Initialize DMA
Xil_Out32(DMAREG_ADDR +

MM2S_CURDESC, BRAM_ADDR);
Xil_Out32(DMAREG_ADDR +

MM2S_DMASR, 0x0000000);
Xil_Out32(DMAREG_ADDR +

MM2S_DMACR, 0x5001);

// Perform DMA
Xil_Out32(DMAREG_ADDR

+ MM2S_TAILDESC, BRAM_ADDR +
(GRAPH_ACCESSES-1) * ALIGN);

}

Fig. 9: Scatter-Gather-Mode AXI_DMA device driver

stored locally on the FPGA fabric in BlockRAMs and coupled

to the AXI_DMA engines over an AXI-HP interface.

In Figure 8, we show the slightly more complex three-

step configuration flow for the Scatter-Gather DMA mode.

As before, we still need to instruct the DMA engine to get

length bytes starting from base_addr location. Instead of

forcing an interrupt after each transfer, we are able to perform

a set of back-to-back transfers directly without interrupting the

host until after the full sequence has been transferred. This

ability to avoid frequent CPU interrupts coupled with FPGA-

based storage of AXI descriptor chain provides low-latency

turnaround times between consecutive DMA transactions. In

scatter-gather mode, we represent the irregular list of accesses

as a linked list of <base_addr>,<length> tuples stored

in local on-chip FPGA BlockRAM. This is loaded once at the

start over AXI-GP ports from the CPU. We represent this in

Figure 9 in the InitializeDescriptors function. The

address of the next descriptor is specified in each descriptor.

117117

The head and tail descriptors are provided to the DMA engine

and it will process one descriptor after another.

IV. EXPERIMENTAL SETUP

We use the Xilinx Zedboard with the Z7020 Zynq SoC for

our DMA experiments. For most of our experiments, we are

operating the ARMv7 CPU in bare-metal mode without any

operating system and use the AXI_DMA engine under various

configurations. We use the ARMv7 CPU to exercise complete

low-level control of the various system components through

appropriate AXI transactions while the DMA engine provides

a high-performance link to the hardened DRAM controller.

Our experiments consider an AXI-compatible spatial hardware

accelerator reading and writing data within a graph algorithm

to the node state and edge state arrays. Thus, the hard-

ware has exclusive read/write access to the node state and

edge state data items while the software has exclusive read

access to the edge offset and edge index structures which

are needed to build the base_addr and length fields. We

also compare the performance of the memory interface when

using the Xillinux 1.3 OS running on the ARM CPU. In this

scenario, we measure the performance of irregular access from

DRAM to the CPU in one case and via Xillybus FIFOs to

the FPGA logic in another. Thus, we are able to quantify the

effects of various individual components on the performance

of the memory subsystem.

We develop two software libraries that interface with the

AXI DMA engine configured on the FPGA to control access

to the sparse access sequences. These are developed in C

and compiled with arm-gcc with the -O3 optimization. For

scatter-gather mode, we currently configure the DMA engine

to access the descriptor chains stored in a single BRAM. For

larger problems, we can either allocate more on-chip BRAMs

to hold the chains locally or use double-buffered memory

loading to scale to larger graphs. We measure runtime of the

various system tasks using a hardware timer in the Zynq SoC

when running in bare metal mode and get_clock_usec
API from time.h when running Xillinux OS. For all our

experimental measurements we repeat the experiment 100s of

times and report averaged runtime to eliminate any unpre-

dictable noise effects during measurement.

Name LUTs FFs BRAMs Clock
(36KB) (ns)

AXI_DMA Register Mode 3363 4138 0 4.3
(% of Zedboard) 6% 4% 0% -
AXI_DMA Scatter-Gather Mode 6149 7738 4.5 4
(% of Zedboard) 12% 7% 3% -

TABLE II: Resource Utilization of the MMUs

We use Xilinx Vivado 2013.4 to synthesize the hardware

design along with the SDK for configuring the processor. We

use the AXI DMA v7.1 IP core [9] generated using the Xilinx

Core Generator and also use the BRAM builder to synthesize

the BlockRAMs used to hold the AXI descriptor chains. We

summarize the resource utilization of the system elements in

Table II.

V. EXPERIMENTS

In this section, we describe the results of our experiments

on observed bandwidth for sparse graph access. We first

quantify the overheads of an operating system for short-

burst transfers on CPUs as well our initial DMA calibration

experiments. Next, we investigate the performance tuning

results for register-mode DMA operation. We finally show

results for optimized scatter-gather operations.

A. Overheads of an OS and Cache

Caching effects and operating system overheads will limit

the achievable throughput for sparse random accesses in graph

algorithms. In Figure 10, we quantify the overhead of using an

operating-system, and enabling caches on ARMv7 host CPU

when conducting sequential and random read accesses. For

sequential accesses shown in Figure 10a, there is a significant

overhead when using an OS for short transfers, but for larger

transfers the OS throughputs are faster. There is a clear need

for enabling caches due to spatial locality of sequential access.

For sparse accesses, we see a similar gap between OS-based

and cache-enabled bare metal access for short transfers, but

a very small one at larger transfers. Again, disabling caches

results in particularly poor access times for longer accesses

as data can still be prefetched/cached within one access. For

sparse graph problems, we expect length per access to be a low

16–64 bytes per access. The data clearly shows that for short

bursty accesses that are typical of sparse graph operations,

there is significant overhead when using an OS+cache. Hence,

our AXI optimizations are run in cache-enabled bare metal

model for maximum performance.

B. AXI_DMA Calibration

Next, we look at the impact of burst_size on DMA

read performance for the AXI_DMA block as we vary the

length of the data fetched in that access (Figure 11). As

we would expect, longer bursts provide better results, but we

observe performance saturation above 128. Furthermore, for

sparse short-burst accesses, we are primarily interested in short

burst_size results as well as short length accesses in the

16–64 byte range. In these situations, a burst_size of 8–32

perform well.

C. Comparing AXI_DMA Register and Scatter-Gather Mode
Operation

In Figure 12, we show the impact of varying the number

of accesses (aggregate size represented) on runtime of the

computation. We see that longer 16-byte bursts tend to deliver

superior runtimes compared to the shorter 2-byte bursts as

expected. Most graph algorithms’ metadata lies in the 8–32

byte range. The bandwidths measured (size/time) are roughly

25–250 MB/s with the lowest bandwidth for a burst size of 2

and the largest bandwidth for the 32 byte burst designs. For

small graphs with few accesses, the slope (bandwidth) is lower

across all designs.

In Figure 13, we compare the observed throughputs of

the Register and Scatter-Gather modes of operation of the

118118

0

200

400

600

4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K

Transfer Size (Bytes)

B
an

dw
id

th
 (

M
B

/s
)

Bare Metal + Cache

 Bare Metal − Cache

Xillybus OS

(a) Sequential Access (Read)

0

20

40

60

4 8 16 32 64 12
8

25
6

51
2

1K 2K 4K

Transfer Size (Bytes)

B
an

dw
id

th
 (

M
B

/s
)

Bare Metal + Cache

Bare Metal − Cache

Xillybus OS

(b) Random Access (Read)

Fig. 10: Comparing the DRAM Read Throughputs of Operating System vs. Bare Metal, Caches vs. No Caches.

1e+01

1e+03

1e+05

16 32 64 12
8

25
6

51
2

1K 2K 4K 8K 16
K

32
K

64
K
12

8K
25

6K
51

2K 1M 2M 4M

DMA Transfer (Bytes)

T
im

in
g

(m
ic

ro
se

co
nd

)

burst size = 2

burst size = 8

burst size = 32

burst size = 128

burst size = 256

Fig. 11: Impact of Burst Size on memory performance

AXI_DMA block at a burst_size of 16 for identical access

sequences. It is clear that there is a performance gap of 2–3×
in favor of Scatter-Gather mode. We expect this due to the

limited interrupt penalty and localized storage of the descriptor

chains.

Finally, we summarize the best-case observed bandwidths

on the DRAM under various access patterns and operating

modes in Table III. As we can see, sequential access patterns

deliver the highest observed throughputs from the DRAM

interface. However, for random access, when the access is per-

formed from the host CPU with caches and OS involvement,

the peak data rates possible drop to merely 34–37 MB/s. We

are able to deliver substantial 2–3× improvements in random

access bandwidth by using Register mode DMA operation

with a burst size of 16. The best improvements of up to 5× are

possible when we carefully construct AXI descriptor chains for

use with Scatter-Gather mode of the AXI DMA engine for our

randomized sparse graph access. While this is still 2.5× less

than the peak sequential throughput possible (as expected),

10

100

25
6

51
2

1K 2K 4K 8K 16
K

Aggregate Transfer Size (Bytes)

T
im

in
g

(m
ic

ro
se

co
nd

)

Register Mode (burst=2)

Register Mode (burst=16)

Scatter−Gather Mode (burst=2)

Scatter−Gather Mode (burst=16)

Fig. 12: Time taken by register mode transfers vs.

scatter-gather mode transfer (memory read)

0

100

200

300

25
6

51
2

1K 2K 4K 8K 16
K

Aggregate Transfer Size (Bytes)

B
an

dw
id

th
 (

M
B

/s
)

Register Mode

Scatter Gather Mode

Fig. 13: Throughput comparison for random access using

Register and Scatter-Gather DMA modes

119119

our throughputs are still superior to cache-based and naı̈ve

register-mode DMA operation.

Mode Bandwidth Ratio
(MB/s)

OS Sequential 610 -
Bare Metal Sequential 510 -

OS Random 37 1×
Bare Metal Random 34 0.9 ×
Register Mode Random 90 2.4×
Scatter Gather Mode Random 270 7.2×

TABLE III: Best-case observed bandwidths

D. Related Work
The design of specialized accelerators for sparse graph

problems have been studied in the past. Some of them use

graph data that is fully cached inside the chip thereby limiting

the largest size of the problem that can be considered while

others just fetch data from the DRAM without optimization.
[1] proposes a re-configurable graph processing architecture

to address the latency differences between on-chip memory

and off-chip memory with an on-chip memory interconnect

between the logic and on-chip memory. However, this design

is only applicable for a narrow class of graph problems that

do not store weights or states along edges and simply perform

a completely local summarization operation. The GraphStep

system architecture [4] is designed to take advantage of

the larger on-chip memory bandwidth available to store and

concurrently process sparse graphs. Scaling to larger graph

sizes was achieved across multiple FPGAs interconnected

by a custom networking fabric. This may be impractical in

most real-world scenarios as FPGAs are expensive devices.

However, if cost is no concern, this architecture offers the

highest performance reported by keeping all graph data fully

inside the chip. GraphGen [6] is another graph-centric ac-

celerator framework for FPGAs that relies purely on off-

chip DRAM-based graph storage and streaming parallelism

to deliver speedups. However, the memory controller in this

design is not particularly optimized to handle graph-oriented

accesses and performance is ultimately limited by DRAM

bandwidth rather than FPGA parallelism.
CoRAM [3] is a FPGA memory abstraction designed to

support memory accesses from within the programmable logic

through a set of commonly-used memory organization pat-

terns. While this does provide a convenient set of primitives to

compose accelerators and load/unload on-chip memories with

ease, there is no specific support for managing large, irregular

data structures.
Convey Scatter-Gather DIMMs [2] allow fast random access

from the FPGA accelerator organized as 8-byte operations to

overcome the wasted cache bandwidth due to 64-byte cache

lines on x86 systems. While this is an improvement, it is still

a fixed-size access which may not match all graph-oriented

access patterns and only operates with Convey boards and

memory controllers.
Instead of forcing all data to be held on-chip or ignoring the

DRAM bandwidth gap, we specifically focus on developing

a memory management unit that can efficiently fetch data

from the off-chip DRAM for irregular access sequences. Our

GraphMMU is compatible with any AXI-supported board

and IP block (accelerator portion) and is not locked to any

specific platform. We consider a variety of AXI optimizations

and quantify the impact of these optimizations on overall

performance. While we demonstrate this design on a small

Xilinx Zedboard, we can build larger-scale graph accelerators

by splitting computations across multiple Zedboards or by

upgrading the design to a denser FPGA.

VI. CONCLUSIONS

We show how to improve off-chip memory throughput for

sparse irregular access by as much as 7× when compared

to cache-based access on embedded CPUs on the Xilinx

Zedboard. We use low-level optimizations of the AXI DMA

engines by constructing descriptor chain sequences that cap-

ture the sparse irregular access. We are able to improve per-

formance by eliminating caches and host CPU for sequencing

the access for the AXI engines. In our AXI optimizations, we

observe improved scatter-gather DMA throughput by as much

as 3× when compared to register-mode DMA. We expect to

build larger graph accelerators by composing multiple Zynq

SoCs together and use the Zynq SoCs as intelligent scatter-

gather engines for distributed graph data.

VII. ACKNOWLEDGEMENTS AND FOLLOWUP

We wish to thank Mohammad S. Sadri for his Zynq tu-

torials and extensive assistance in supporting us during the

preliminary stages of the project. You may download code

under a BSD license from https://bitbucket.org/nachiketkapre/

graph mmu with commit hash 08a3c4b.

REFERENCES

[1] B. Betkaoui, D. Thomas, W. Luk, and N. Przulj. A framework for FPGA
acceleration of large graph problems: Graphlet counting case study. In
Field-Programmable Technology (FPT), 2011 International Conference
on, pages 1–8, 2011.

[2] T. M. Brewer. Instruction Set Innovations for the Convey HC-1
Computer. Micro, IEEE, 30(2):70–79, 2010.

[3] E. S. Chung, J. C. Hoe, and K. Mai. CoRAM: An In-Fabric Memory
Architecture for FPGA-based Computing. Multiple values selected, Jan.
2011.

[4] M. deLorimier, N. Kapre, N. Mehta, D. Rizzo, I. Eslick, R. Rubin, T. E.
Uribe, T. F. J. Knight, and A. DeHon. GraphStep: A system architecture
for sparse-graph algorithms. In Field-Programmable Custom Computing
Machines, 2006. FCCM’06. 14th Annual IEEE Symposium on. IEEE,
IEEE Computer Society, 2006.

[5] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
Studies in the Mathematical Sciences. Johns Hopkins University Press.

[6] E. Nurvitadhi, G. Weisz, Y. Wang, S. Hurkat, M. Nguyen, J. C. Hoe, J. F.
Martı́nez, and C. Guestrin. GraphGen: An FPGA Framework for Vertex-
Centric Graph Computation. In Field-Programmable Custom Computing
Machines (FCCM), 2014 IEEE 22nd Annual International Symposium
on, 2014.

[7] M. Sadri, C. Weis, N. Wehn, and L. Benini. Energy and performance
exploration of accelerator coherency port using Xilinx ZYNQ. In
FPGAworld ’13: Proceedings of the 10th FPGAworld Conference. ACM
Request Permissions, Sept. 2013.

[8] L. G. Valiant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8), Aug. 1990.

[9] Xilinx, Inc. LogiCORE IP AXI DMA v7.1, Mar. 2014.
[10] Xilinx, Inc. Zynq-7000All Programmable SoC, Nov. 2014.

120120

