Fanout Decomposition Dataflow Optimizations for
FPGA-based Sparse LU Factorization

Siddhartha
School of Computer Engineering
Nanyang Technological University
Email: siddharth@pmail.ntu.edu.sg

Abstract—

Performance of FPGA-based token dataflow architectures is
often limited by the long tail distribution of parallelism in the
compute paths of the dataflow graphs. This is known to limit
speedup of dataflow processing of Sparse LU factorization to
only 3-10x over CPUs. One reason behind the limitations is
the serialization penalty of processing high-fanout nodes in the
dataflow graph on traditional dataflow processing architectures.
In this paper, we show how to perform one-time static fanout
decomposition and selective node replication transformations to
input dataflow graphs. These transformations are one-time static
compute costs that are typically amortized over millions of itera-
tions. For dataflow graphs extracted for sparse LU factorization,
we demonstrate up to 2.3 speedup (1.2 x geomean average) with
this technique across a range of benchmark problems.

I. INTRODUCTION

FPGA-based token dataflow architectures are an increas-
ingly important design choice for accelerating many hard com-
putational problems where parallelism is sparse, and irregular.
In these circumstances, a raw unrolled dataflow graph exposes
all possible parallelism in the computation in its purest form.
The dataflow architectures allow asynchronous, decoupled
evaluation of parallelism in irregular graphs without the need
for complex synchronization protocols. The dataflow graph
execution proceeds using a simple dataflow firing rule where a
node is fired when all its inputs are received. Sparse LU factor-
ization is one such representative engineering application that
is notoriously hard to parallelize and is considered a challeng-
ing problem for conventional processors. It is a well-known
compute bottleneck in fields such as circuit simulation [5]],
computational fluid dynamics [3]], bioinformatics, among many
others. When the sparse matrices are fixed, we can extract its
unique dataflow graph for LU factorization. Hardware-assisted
token dataflow acceleration of Sparse LU implementations
(e.g. [6], [1Q]) can deliver non-trivial speedups of 3—10x over
CPU-based solvers. However, this is currently achieved non-
optimally, leaving substantial room for improvement.

Dataflow graphs often have a few nodes with large fanout
counts. Typically fanout nodes are processed in sequence
in the dataflow PE, resulting in serialization bottlenecks for
large fanouts. In Figure we observe serialization of up
to ~ 180 cycles to process a single node fanouts. As we
scale system sizes, high fanout nodes quickly become the
performance bottleneck. We need to reduce this overhead

Nachiket Kapre
School of Computer Engineering
Nanyang Technological University
Email: nachiket@ieee.org

2500

2000

1500

Frequency

1000

500

0 TR RO NP Il L
0 20 40 60 80 100 120 140 160 180 200
Number of fanouts

Fig. 1: Benchmark Fanout properties (bomhof2)

by distributing fanout serialization across multiple PEs. We
achieve this by doing controlled fanout decomposition on high
fanout operator nodes and node replication of constant nodes
with high fanouts. These static transformations are one-time
steps that can be amortized over millions of iterations in Sparse
LU factorization problems.

The key contributions in this paper are:

e Design of a dataflow compiler that performs fanout
decomposition/node replication in the dataflow graphs.

o Quantification of performance of the dataflow compiler
on sparse matrix benchmarks selected from the circuit
simulation domain.

II. BACKGROUND
A. Token Dataflow Architecture

Token Dataflow architectures were the subject of academic
studies in the early 1990s e.g. [7[, [2], [4]. However, due
to the emergence of the killer microprocessors, these designs
and ideas were largely relegated to academic projects. At an
abstract level, the dataflow architecture is composed of PEs
connected by switched network fabric. Computation on this
architecture is organized as a sequence of “token” communica-
tion along graph dependency edges and subsequent “dataflow
firing” at the graph nodes. Each PE has local memory blocks
that are used to store portions of the dataflow graph for
localized processing. Each PE is capable of performing logic
and/or arithmetic operations on each node of the graph based
on a dataflow firing rule. Under this rule, each node is
allowed to independently and asynchronously compute when
it has all inputs ready. Dependencies between nodes are

Algorithm 1: Gilbert-Peierls

Data: sparse matrix A
Result: factors L & U
1 L=1I
2 for i=1:N do
3 b=A(, 1),
4 x = L\b;
5 Ul , 7) = x(1:9);
6
7

L(i+1:N , i) = x(e+1:N) / U@ , 9);
end

routed through the packet-switched token communication net-
work. For FPGA-based systems, dataflow processing offers an
unique opportunity to deliver a reprogrammable and scalable
computing substrate that can be tailored to different applica-
tions. In this paper, we consider a customized heterogeneous
token dataflow architecture optimized for sparse LU factoriza-
tion as the vehicle for our experiments and optimizations.

B. Sparse LU Factorization

In many numerical problems, we are required to solve
a set of linear equations expressed as A¥ = b in matrix-
vector notation. Matrix A is often a highly sparse matrix
that stays structurally unchanged when working with real-
world applications. For e.g. , in circuit simulation, each circuit
component is only connected to a few neighboring elements,
thereby resulting in very localized non-zero patterns when
represented as a matrix. The hardware design we consider
in this paper is based on the KLU solver [1]. KLU does a
one-time pre-ordering step that fixes non-zero locations in the
matrix, allowing us to keep the dataflow and memory structure
static throughout an iterative process. This step is especially
suitable for parallel hardware-assisted solvers [6]], as there is
no need to recompute the dataflow graph and do dynamic
memory allocation in each iterative step. At the heart of the
KLU solver is the Gilbert-Peierels (GP) algorithm (Listing .
The GP algorithm is responsible for generating the L & U
factors for the input matrix A. In [[6], we unrolled the for-loop
in the GP algorithm to generate giant dataflow graphs that
represent the GP compute flow. However, a front-solve (line
must be carried out in each step of the for-loop, which
becomes a compute bottleneck as the lower-triangular (L)
matrix is iteratively built in each for-loop iteration. In [§]], we
targeted this front-solve by doing a one-time recursive depth-
limited substitution and reassociation to further expose any
available parallelism. In this paper, we take our experiments
further by testing our dataflow optimizations on the substituted
and reassociated dataflow graphs and simulate performance on
a heterogeneous token dataflow hardware architecture [9].

C. Token Dataflow Architecture for Sparse LU Factorization

For our intended scenario, the front-solve in sparse LU
factorization operates in single-precision floating-point arith-
metic. The numerical calculations are mostly multiplies and
adds with a few divides. For our heterogeneous dataflow
design shown in Figure 2] we customize the ALU functions

ADD MULT ADD MULT
PE RE PE PE
Graph Graph Graph Graph
|]
L L
|
ADD MULT ADD MULT
PE BE PE PE
Graph Graph Graph Graph
|]
L L
| L
ADD MULT ADD MULT
PE PE PE PE
Graph Graph Graph Graph
|
L] L]
|
ADD MULT ADD DIV
PE PE PE PE
Graph Graph Graph Graph
|

Fig. 2: Heterogeneous Token Dataflow architecture
(add:mult = 1:1, two NoC channels)

handled by each PE to reflect this distribution. We also
customize the communication network by adding a faster
multi-hop channel between the add PEs to allow critical
dependencies to be routed faster.

III. FANOUT OPTIMIZATIONS

Performance of token dataflow architectures is often limited
by the long tail distribution of parallelism in the dataflow
graph. Within these constraints, performance is often exac-
erbated by the oblivious processing of high-fanout nodes. For
high-fanout nodes, serialization of packet transmissions can
limit performance as only one fanout can be serviced every
cycle. To tackle this issue, we propose a fanout decomposition
scheme as demonstrated in an example in Figure [3] We use
a similar strategy for constant input nodes with large fanout,
where instead of creating a fanout tree, we perform locality-
aware node replication, which is a cheap memory tradeoff for
improved performance.

To implement fanout decomposition, we first define two
control parameters: threshold (f;) and arity (f,). If the fanout
size of a node in our input dataflow graph is greater than f;,
we perform fanout decomposition on that node. The decompo-
sition is carried out such that arity of decomposed fanout tree
is not greater than f,. Therefore, each node in the decomposed
tree has no more than f; fanouts, and each newly-created
node in the decomposed tree has no more than f, fanouts.
Under these constraints, we decompose the fanouts in the most
balanced way possible, such that the fanouts are distributed
across the new copy nodes (new red nodes in Figure [3(b))
as evenly as possible. Selecting values for f; and f, could be
potentially complex — for example, we could design a dynamic
threshold/arity selection scheme based on graph properties, PE

@
gedsse

*

(a) Undecomposed

® o9

O©®®

(b) Arity-2 Decomposition

Fig. 3: Fanout Decomposition Example

configuration and/or placement information. In this study, we
do a simplified design space search for potentially optimal f;
and f, values (denoted as (f, f,) tuple) for each benchmark.
We limit our search space to powers of 2 threshold/arity values
(up to (16,4)), and draw conclusions based on results observed.
We observe that a (16,4) fanout decomposition design point
has the best results when considered across all benchmarks.

IV. METHODOLOGY

In this section, we detail our compilation flow and comment
on our hardware design characteristics.

A. Dataflow Compilation Flow

For quantifying the performance limits of our dataflow
hardware and compiler, we extract dataflow graphs for sparse
LU matrices. Our matrix pre-processors convert input matrices
from circuit simulation domain represented in the Matrix
Market (.mtx) format into corresponding dataflow graphs. Our
dataflow compiler applies fanout transformations as discussed
earlier in Section [[ll We quantify any speedups observed
with reference to the baseline performance in [6]], where no
optimizations were used. Our flow is currently supporting
sparse LU factorization graphs, but it is general and applicable
to other domains beyond circuit simulation where applications
can be characterized by large, irregular dataflow graphs.

B. Dataflow Hardware Design

We target the Xilinx Virtex-6 SX475T FPGA device similar
to the one used in [6]. This limits the largest heterogeneous
dataflow processing system we can accommodate on this
device to 12x12 (144 PEs) [9]. The switching latencies are

TABLE I: Benchmark Graph Properties

Benchm. Rows Sp. Graph Properties

Nodes Edges Const. Adds Mults g;::l
s27 189 33% 54k 57k 26k 09k 1.9k 1k
s208 1,296 0.5% 116k 137k 47k 22k 46k 12k
s344 1,992 03% 126k 145k 54k 22k 50k 15k
$349 2,017 03% 129k 147k 55k 23k S5lk 13k
s298 1,801 0.4% 220k 267k 87k 48k 85k 16k
$382 2219 03% 287k 351k 111k 57k 119k 20k
bomhof3 12,127 0.03% 760k 959k 280k 203k 277k 48k
bomhofl 2,624 0.5% 19m 2.6m 628k 575k 711k 24k
s953 4872 02% 40m 53m I.Im 841k 1.6m 76k
bomhof2 4,510 0.1% 6.lm 84m 1.6m 14m 24m 49k
simucad 4,875 03% 6.6m 88m 22m 19m 25m 75k

Sp. = Sparsity

TABLE II: Benchmark Cycles and Speedups

Cycles and Speedup

Benchmark BASE FANOUT
Cycles fe fa Cycles Speedup

s27 17k 8 2 25k 0.7x
5208 229k 4 1 290k 0.8x
s344 265k 4 1 349k 0.8x
$349 254k 8 2 318k 0.8%x
5298 388k 4 1 437k 0.9x
$382 470k 16 4 548k 0.9x
bomhof3 1.2m 16 4 1.2m 1.0x
bombhofl 2.1m 16 4 1.1m 1.9x
$953 2.8m 16 4 2.2m 1.3x
bomhof2 2.7m 16 4 1.5m 1.8x
simucad 6.7m 16 4 2.9m 2.3%x
GEOMEAN 1.2x

calibrated to meet the target 250MHz design frequency. Our
design can optimally support dataflow graphs that can fit the
entire data structure into the on-chip BRAM memory blocks.
We use the same data transfer and communication latency
models established in [5]].

V. RESULTS

In this section, we present our results and offer a brief
discussion and future outlook on the observed trends. We
test a total of 11 benchmarks, extracted from the circuit
simulation domain. The benchmarks range in size/sparsity
from hundreds to tens of thousands of non-zeros. The graph
properties of dataflow graphs extracted from the input matrices
are tabulated in Table [We report graph properties in Table [[|
for (fi, fa) = (16,4) design point.

A. Benchmark Sizes

We note speedups between 0.7-2.3x when our fanout
decomposition optimization is enabled. For small benchmarks,

e.g. s27, s208 and s298, we observe a slowdown of 0.7—
0.9x as the graphs are too small to benefit from fanout
restructuring. These benchmarks are composed of few nodes,
and they have a relatively fewer number of nodes with
high fanout counts. Decomposing high-fanout nodes in small
benchmarks adds communication workload (extra packets rep-
resenting decomposed nodes) that is a significant proportion of
overall workload. Hence, any small benefits from decomposing
high fanout nodes is lost to communication penalties. For
large dataflow graphs, speedups are proportionally larger as
noted in Figure [4] These larger dataflow graphs contain many
more nodes with relatively higher fanout counts, and often,
the critical path lies along these high fanout nodes. Fanout
decomposition in these dataflow graphs delivers significant
cycle savings that offset any extra communication overhead
from extra nodes created during fanout decomposition. From
Figure[d we observe that we can only start achieving speedups
for benchmarks larger than ~~1M nodes. Note the (fy, fa)
selection also varies with size of benchmark (Table [[)), which
could be used as a heuristic for building a performance model
for cheap one-time (f;, ;) design point selection.

24
2.2

2 - -
1.8
1.6
1.4
1.2

1 - -
0.8

0.6 .
0.001

Speedup

0.01 0.1 1 10
Graph size (Million nodes)

Fig. 4: Correlation between size of dataflow graph and
speedup with dataflow optimization enabled

B. Benchmark Scaling Properties

In Figure [5] we show the effect of scaling PEs on perfor-
mance of a select 5 benchmarks. We note a linear improvement
in performance at small PE counts with a saturation effect at
PE counts above 64 for most of the cases. Certain benchmarks
like bomhof3 and s953 do not scale particularly well due
to limited parallelism in the input itself (long critical paths).
These benchmarks serve as motivation for developing dataflow
optimizations that are able to push performance despite lack
of available parallelism.

VI. CONCLUSIONS

In this paper, we show how to improve performance of
FPGA-based token dataflow architectures through a static
fanout restructuring dataflow optimization strategy. We show
how to achieve an additional speedup of up to 2.3x (mean

bomhof2 —w— bomhof3 ---¥--- $953
bomhof1 ---¥--- simucad
7
_ sf]
2
s °r]
s 40]
2 3T~
L o sy .
SRR 2t S ¥3
A " G i ----v-.-.-';-_-.-_-.-;:‘:.’;L‘::;Li.’llﬁ.-*y
0 : ; ' ' '

Number of PEs

Fig. 5: Cycles vs PEs scaling trends for several benchmarks
when all optimizations are enabled

1.2x) on top of existing performance of parallel dataflow hard-
ware. Our static optimizations focus on decomposing/replicat-
ing high fanout operator/constant nodes to reduce serializa-
tion delays. The optimizations take advantage of statically-
computed metrics, which are negligible one-time costs in
highly iterative applications (e.g. SPICE). We demonstrate our
approach on dataflow graphs that are representative of Sparse
LU Factorization kernels, but our methods could be easily
adapted for other domains that have fine-grained irregular data
compute requirements.

VII. FUTURE WORK

We intend to extend our compiler to handle dataflow graphs
from other domains beyond circuit simulation. We also seek
to develop more static and runtime dataflow optimizations for
improved dataflow architecture efficiency.

REFERENCES

[1] T. A. Davis and E. Palamadai Natarajan. Algorithm 907: KLU, A Direct
Sparse Solver for circuit simulation problems. ACM Trans. Math. Softw.,
37(3):36:1-36:17, Sept. 2010.

[2] J. B. Dennis and D. P. Misunas. A preliminary architecture for a basic
data-flow processor. SIGARCH Comput. Archit. News, 3(4):126-132,
Dec. 1974.

[3] J. H. Ferziger and M. Peri¢. Computational methods for fluid dynamics,
volume 3. Springer Berlin, 1996.

[4] J. R. Gurd, C. C. Kirkham, and I. Watson. The manchester prototype
dataflow computer. Commun. ACM, 28(1):34-52, Jan. 1985.

[5] N. Kapre. SPICE2-A Spatial Parallel Architecture for Accelerating the
SPICE Circuit Simulator. PhD thesis, California Institute of Technology,
Pasadena, 2010.

[6] N. Kapre and A. DeHon. Parallelizing sparse Matrix Solve for SPICE
circuit simulation using FPGAs. In Field-Programmable Tech., 2010.

[7]1 G. Papadopoulos. Monsoon: a dataflow computing architecture suitable
for intelligent control. Intelligent Control, 1990. Proceedings., 5th IEEE
International Symposium on, 1990.

[8] Siddhartha and N. Kapre. Breaking Sequential Dependencies in FPGA-
based Sparse LU Factorization. In The International Conference on Field
Programmable Logic and Applications 2014, pages 1-4, Sept. 2014.

[9] Siddhartha and N. Kapre. Heterogeneous Dataflow Architectures for

FPGA-based Sparse LU Factorization. In FPL ’14: Proceedings of the

2014 22nd IEEE Symposium on Field Programmable Custom Computing

Machines, pages 1-4, Mar. 2014.

X. Wang and S. G. Ziavras. Parallel LU factorization of sparse matrices

on FPGA-based configurable computing engines. Concurrency and

Computation: Practice and Experience, 2004.

[10]

