
Communication Optimization for the 16-core
Epiphany Floating-Point Processor Array

Siddhartha, Nachiket Kapre
Nanyang Technological University

50 Nanyang Avenue, Singapore
siddhart005@e.ntu.edu.sg, nachiket@ieee.org

Abstract—The management and optimization of communi-
cation in an NoC-based (network-on-chip) bespoke computing
platform such as the Parallella (Zynq 7010 + Epiphany-III SoC)
is critical for performance and energy-efficiency of floating-
point bulk-synchronous workloads. In this paper, we explore
the opportunities and capabilities of the Epiphany-III SoC for
communication-intensive workloads. Using our communication
support library for the Epiphany, we are able to accelerate
single-precision BSP workloads like the Sparse Matrix-Vector
multiplication (SpMV) on Matrix Market datasets by up to 6.5×
and PageRank algorithm on the BerkStan SNAP dataset by up
to 8×, while lowering power usage by 2× over optimized ARM-
based implementations. When compared to optimized OpenMP
x86 mappings, we observe a ≈10× improvement in energy
efficiency (GFLOP/s/W) with Epiphany SoC.

I. IDEA

Many modern SoCs (systems-on-chip) are equipped with
a fast and capable communication fabric (NoC, network-
on-chip) that makes it possible to accelerate a range of
communication-intensive problems while lowering power re-
quirements by avoiding complex shared-memory controllers.
In this paper, we investigate the raw potential and tuneability
of the Epiphany III SoC [2] that is a bespoke computing plat-
form optimized for processing of communication-rich floating-
point applications. The Epiphany SoC is a spiritual successor
to Ambric [1] and reaches further with floating-point support
and packet-switched NoC enhancements. However, utilizing
the Epiphany NoC to its fullest potential can be a challenge
due to limited software-based communication optimization
support. In this paper, we develop a framework for exposing
and optimizing communication for this SoC through a graph-
centric bulk-synchronous model. We use a combination of
strategies including (a) effective generation and storage of
communication graphs within the per-core 32KB RAMs, (b)
automated unrolling of message-passing instructions to keep
the NoC busy with useful work, and (c) programmable selec-
tion of DMA or memcpy functions for implementing specific
communication patterns depending on data transfer size.

II. CASE STUDIES

We characterize and automate performance tuning of spatial
parallelism for supporting (1) random access load-store style
traffic suitable for irregular sparse computations found in
Sparse Matrix-Vector (SpMV) multiplication workloads, as
well as (2) variable, data-dependent traffic patterns in PageR-
ank workloads.

A. Sparse Matrix-Vector (SpMV) Multiplication

We profile the performance of SpMV on 17 different Matrix
Market matrices from different domains (e.g. circuit simula-
tion and computational fluid dynamics). We benchmark the
performance of our communication library against optimized
ARM implementations, and observe speedups ranging from 2–
6.5× across the datasets when all our optimizations are active.
In comparison, without our communication optimizations
enabled, SpMV performance suffers 0.14–0.53× slowdown.

PageRank

SpMV

0.00 0.05 0.10 0.15 0.20
Sustained GFLOP/s/W

x86 ARM Epiphany Epiphany Unopt.

Fig. 1: Peak GFLOPs/W performance comparisons

B. PageRank

We use the BerkStan web graph from the SNAP [3] library
as input to PageRank and benchmark performance against
optimized CPU implementations. We observe performance
improvements with increasing number of edges (links) in the
input graph, and achieve speedups of up to 8× on the largest
graphs when all our optimizations are enabled. In contrast,
without any optimizations enabled, the Epiphany is able to
achieve speedups only up to 1.44× for the largest graphs.

We also compare the power efficiency of the Epiphany
(with/without our communication library) against ARM and
x86 mappings (Intel Xeon CPU E5-1650 v2 @ 3.50GHz with
OpenMP). We observe about 10× improvements in energy
efficiency over x86 mappings (Figure 1).

REFERENCES

[1] M. Butts. Synchronization through communication in a massively parallel
processor array. Micro, IEEE, 27(5):32–40, 2007.

[2] L. Gwennap. Adapteva: More flops, less watts. Microprocessor Report,
6(13):11–02, 2011.

[3] J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.


