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ABSTRACT

Off-the-shelf accelerator-based embedded platforms offer a com-
petitive energy-efficient solution for lightweight deep learning
computations over CPU-based systems. Low-complexity classi-
fiers used in power-constrained and performance-limited scenar-
ios are characterized by operations on small image maps with 2—
3 deep layers and few class labels. For these use cases, we con-
sider a range of embedded systems with 5-20 W power budgets
such as the Xilinx ZC706 board (with MXP soft vector proces-
sor), NVIDIA Jetson TX1 (GPU), TI Keystone II (DSP) as well
as the Adapteva Parallella board (custom multi-core with NoC).
Deep Learning computations push the capabilities of these plat-
forms to the limit through compute-intensive evaluations of mul-
tiple 2D convolution filters per layer, and high communication re-
quirements arising from the movement of intermediate maps across
layers. We present CaffePresso, a Caffe-compatible framework for
generating optimized mappings of user-supplied ConvNet specifi-
cations to target various accelerators such as FPGAs, DSPs, GPUs,
RISC-multicores. We use an automated code generation and auto-
tuning approach based on knowledge of the ConvNet requirements,
as well as platform-specific constraints such as on-chip memory ca-
pacity, bandwidth and ALU potential. While one may expect the
Jetson TX1 + cuDNN to deliver high performance for ConvNet
configurations, (1) we observe a flipped result with slower GPU
processing compared to most other systems for smaller embedded-
friendly datasets such as MNIST and CIFAR10, and (2) faster and
more energy efficient implementation on the older 28nm TI Key-
stone I DSP over the newer 20nm NVIDIA TX1 SoC in all cases.

1. INTRODUCTION

Recent advances in deep learning convolutional neural networks
[11] (ConvNets) have opened the door to a range of interest-
ing computer vision and image processing applications. Mod-
ern accelerator-based embedded SoC platforms are able to support
novel computer vision applications with demanding requirements
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Figure 1: High-Level Overview of Deep Learning Convolutional

Networks (3-layer sample network shown). Showing parameters

i.e. number of maps L;, 2D convolutional kernel sizes K; x K,
fully-connected layers, and the image resolution W x H.

such as video analytics in smart cameras, drone-based image pro-
cessing, medical patient monitoring, automotive navigational intel-
ligence, among many others. Unlike large-scale, high-resolution,
deep learning networks, the scope of the embedded classification
task is restricted to a few classes (e.g. detecting humans, identifying
roadblocks, classifying a few faces). They are typically supported
by training datasets operating on smaller resolutions and in these
circumstances, the primary objective is energy efficiency and low
latency of response. For instance, real-time pedestrian detection [1]
in autonomous vehicles can be performed in a two-step approach
where higher-level computer vision routines extract smaller subsets
of the image for subsequent processing with deep learning flows.
For embedded scenarios, deep learning computations can be eas-

ily offloaded to DSP, GPU, and FPGA accelerators as they support
high processing throughputs with very low power consumption.
While there is significant interest in design of ASICs customized
for deep learning [5, 8, 6, 2, 3], along with large FPGA-based [10,
14, 7] and GPU-based accelerators [13] for high-performance sys-
tems, we investigate the potential of commercial off-the-shelf SoC
hardware for efficiently implementing these tasks at lower cost and
power requirements in an embedded context. Modern embedded
SoCs with accelerators present a unique mapping challenge with
differences in the kinds of parallelism best supported by the at-
tached accelerators, the available on-chip buffering capacity and
off-chip bandwidths. Furthermore, each platform ships with ready-
to-use libraries that are often tricky to optimize when composed
to construct large applications. In this paper, we develop a Caffe-
compatible code generation and optimization framework that al-
lows us to generate deep learning stacks tailored to different em-
bedded SoC platforms. We highlight the promise and challenge for
the platforms we consider below,

o GPUs: GPU-based SoC platforms such as the NVIDIA Jetson
TK1 and TX1 systems are a popular choice for supporting em-
bedded computer vision problems. They offer high data-parallel
processing throughputs and naturally map the convolution-rich



nature of deep learning code to floating-point ALUs. Further-
more, we can easily exploit the highly-optimized cuDNN [4] li-
brary for NVIDIA GPUs that reformulate parallelism in the deep
learning computations into SIMD matrix operations.

e DSPs: DSP-based platforms such as the TI Keystone 2 are
a competitive alternative that exploit an energy-efficient multi-
core VLIW organization. The TI C66 DSPs considered in
this study are organized as VLIW engines that combine mul-
tiple instructions (arithmetic, memory, control) into a single-
cycle for high performance. While these DSPs have optimized
DSPLib and IMGLib libraries that take full advantage of the
DSP cores, we wrap these low-level routines into a patch-based
partitioned approach that takes full advantage of the eight DSP
cores while keeping intermediate maps resident in the on-chip
MSMC RAMs to the fullest extent possible.

e Multi-Cores: The Adapteva Epiphany III SoC is an exotic multi-
core floating-point architecture supported by a message-passing
NoC (network-on-chip). The key benefit of this alternate orga-
nization is the low power consumption of the 16-core chip (~=1-
2 W for the chip) due to RISC-like CPU organization and energy-
efficient on-chip data movement over the NoC. We develop an
optimized library for deep learning computations by simultane-
ously managing compute optimizations on the CPUs along with
concurrent data transfers on the NoC.

o FPGAs: Usually, FPGAs can deliver higher energy efficiencies
through fully-customized dataflow circuit-oriented operation and
close coupling with the memory subsystem through a long and
complex RTL-based design flow. In this paper, we consider the
Vectorblox MXP [12] soft vector processor as a way to simplify
the FPGA programming burden while retaining the advantages
of the FPGA fabric. We develop a customized framework for
writing parameterized vector code, scratchpad-friendly routines,
and flexible DMA transactions that are suitably scheduled for
high throughput operation.

The key contributions of this paper include:

1. Development of Caffe-compatible backends for Deep Learn-
ing configurations including small networks for datasets such
as MNIST, CIFAR10, STL10, and Caltech101 as well as larger
networks such as AlexNet for the ImageNet dataset on various
accelerator-based SoCs. To our knowledge, there is no exist-
ing Caffe support for the Keystone II SoC (DSP portion), the
Epiphany-II1, or the MXP vector overlay.

2. Automated code generation and performance tuning for the TI
Keystone II (DSP), Parallella Epiphany (Multi-core), and Xilinx
ZC706 Zynq system (FPGA). NVIDIA X1 SoC uses the already-
optimized cuDNN library.

3. Quantification and analysis of performance and energy efficiency
for different datasets and various optimization strategies across
the embedded SoC platforms listed above.

2. BACKGROUND

2.1 Convolutional Neural Networks

Convolutional neural networks (ConvNets) are a powerful ma-
chine learning framework that finds widespread application in com-
puter vision and image processing. For our embedded implementa-
tion context, we are primarily interested in energy-efficient accel-
eration of classifiers with few class labels. For instance, MNIST
and CIFARI10 detect ten handwritten digits and ten object classes
respectively. In these scenarios, the classification model is trained
offline for high accuracy and requires fast evaluation of the forward
pass where we perform actual classification with real data. The
backward training pass is a one-time task that can be performed per

Table 1: Various datasets and associated ConvNet configurations
tested in this paper. Some combinations do not require the 3rd
layer. 2x2 pool and subsample in layers where not specified. Fully
connected layers not shown (<10% fraction of total time).

Dataset Layer 1 Layer 2 Other Layers Ops.
MNIST 5 maps 50 maps - 8.9M
2828 5x5 kern. 5x5 kern.
CIFAR10 32 maps 32 maps 64 maps 14.6M
32x32 5x5 kern. 5x5 kern. 5x5 kern.
STL-10 32 maps 32 maps - 139M
9696 5x5 kern. 5x5 kern.
Caltech101 64 maps 256 maps - 23G
151x151 9x9 kern. 9x9 kern.

10x10 pool  6x6 pool

5x5 subsm. 44 subsam.

ImageNet 96 maps
227x227 11x11kern.  5x5 kern.
(AlexNet ') 3x3 pool

256 maps 384,384,256 maps  1.7G
33 kern.

3% 3 pool. 34 pool.

'Based on Caffe’s implementation of AlexNet —
https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet

dataset and is neither critical for acceleration for small embedded
datasets nor constrained by platform limitations (i.e. training can
be done on a more capable machine(s) with compatible arithmetic
libraries).

ConvNets are organized into multiple layers consisting of a com-
bination of convolution, pooling, and rectification stages followed
by a final classifier stage as shown in Figure 1. The structure of
the algorithm is organized to replicate biological behavior in an al-
gorithmic manner that can be trained and customized for various
classification requirements. Within each layer, we generate various
feature maps that recognize higher-level patterns to enable simpler
final classification. For object detection and recognition in images,
an individual layer typically involves a 2D convolution with trained
coefficients to extract feature maps, pooling operations to subsam-
ple the image to lower resolutions, followed by a non-linear rec-
tification pass. Across layers, we must communicate and average
various feature maps before repeating this compute step. With suit-
able training data and appropriate training of convolution weights,
we can generate classification vectors that can recognize class la-
bels with high accuracy. Our embedded implementation is param-
eterized in terms of (1) number of layers in the network N, (2)
number of feature maps in each layer L;, (3) kernel sizes for 2D
convolutions in each layer K; x Kj;, along with (4) pooling and
subsampling factors (usually 2x2). We show the various configu-
rations for the embedded datasets we use in this study in Table 1.

In its simplest form, the ConvNets typically invoke 2D convolu-
tions, pooling, rectification, and fully-connected tasks as required
for the particular dataset. For embedded implementation, we quan-
tify the stand-alone computational complexity and runtime (32 x32)
on the ARMv8 32b (Jetson TX1’s CPUs) and Maxwell 256-core
GPU (Jetson TX1’s accelerator) in Table 2. As we can see, beyond
the obvious 8-13x acceleration advantage when using the GPU,
2D convolutions are overwhelmingly the slowest computations in
this stack. Particularly, as we scale the kernel size, runtime scales

Table 2: Raw timing numbers for one 32 x 32 image patch on
Jetson TX1 (CPU and GPU) using Caffe + cuDNNv4.

Function Caffe API Jetson TX1 Time (ms)
ARM+NEON GPU  Ratio

2D Convolution  conv 1.196 0.117 102

Pooling pool 0.124 0.015 8.2

Rectification relu 0.191 0.014 13.6



Off-chip Memory
System-Level Power
Host Operating System
Compiler +

Library

Cost* (USD)

4 GB 32b LPDDR4-800
6 W (Idle), 1I0W
Ubuntu 14.04
gec-4.8.4, nvee 7.0
cuDNN v4

$599

2 GB 72b DDR3-1600 2 x
11W (Idle), 14 W
Bare-Metal (no OS)

TI CCSv6, DSPLibv3.1.0.0
IMGLib v3.1.1.0

$997 ($667/chip)

1 GB 32b DDR3-1066
3W (Idle), 4 W
Ubuntu

e-gcc

$126
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Figure 2: Comparing various Embedded Accelerator-based SoC Platforms used in this study.
Table 3: Platform specification of the FPGA, GPU and DSP-based SoC boards.
Platform Jetson TX1 66AK2H12 Parallella Z.C706
Vendor/SoC NVIDIA Tegra X1 TI Keystone II Adapteva Epiphany-IIT  Xilinx Zynq Z7045
Technology 20nm 28 nm 65nm 28nm
Processor ARMvV8+NEON ARMV7+NEON ARMV7 (Zynq) ARMV7+NEON
Accelerator Maxwell GPU 256-core ~ C66 DSP 8-core Epiphany-III 16-core Kintex FPGA 16-32 lanes
Host Clock 1.9GHz 1.4GHz 667 MHz 667 MHz CPU
Accelerator Clock 1GHz 1.2-1.4GHz 667 MHz 180 MHz FPGA!
On-chip Host Memory 64KBLI+2048KBL2 32KBL1+1MBL2 32KBLI+512KBL2 32KBLI+512KBL2
On-chip Accelerator Memory 64 KB3 6 MB MSMC 32 KB/core 64 KB SRAM?

2 GB 32b DDR3-1066
17W (Idle), I9W
Bare-Metal (no OS)
gec-4.6.3

Vivado 2014.2

$2275 ($1596/chip)

'FPGA peak 250+ MHz, VBX runs at 110 MHz. 2FPGA 560 KB RAM, VBX uses 64 KB.3__shared__ RAM is 48KB/thread, but 64KB total. *Prices

from vendors/component resellers are approximate and for high volume use as observed in May 2016.

quadratically. For pooling, the stride length has some impact on
performance as the cache locality is affected for irregular strides.
When sequencing a series of ConvNet layers, the storage of in-
termediate maps can become a challenge for embedded platforms
with limited on-chip capacity. Hence, the optimization focus on
constrained embedded platforms needs to be on faster 2D convolu-
tions (parallel arithmetic operations) as well as smarter data sharing
between multiple layers of the ConvNet stack.

2.2 Architecture Potential

We are interested in identifying the fastest and most energy ef-
ficient SoC platform for implementing embedded deep learning
computations. To understand the potential of our accelerator en-
hanced SoCs, we first calculate the raw datasheet potential of the
GPU, DSP, Multi-core and FPGA SoCs. We visualize the high-
level organizations of these SoCs in Figure 2 and list the relevant
specifications in Table 3. We tabulate the key throughput, power
and efficiency trends in Table 4. They are all supported with ARM
host CPUs coupled to accelerators either via on-chip AXI busses,
NoC links, or shared cache/memory interfaces. The TI DSP and
FPGA (MXP vector engine) implement pixel operations in 16b
fixed-point (64b or 32b extended precision for accumulations for
respective platforms) rather than floating-point. The NVIDIA GPU
and Epiphany SoC support single-precision floating-point. We note

that pixel arithmetic can be easily implemented with a combination

of 8b, 16b and 32b fixed-point operations while achieving similar

accuracy as floating-point implementations. We enumerate and ex-
plain key specifications and capabilities of the various platforms:

o GPU: The Tegra X1 SoC contains a quad-core 1.9 GHz ARMvS
CPU (Cortex A-57) with NEON support and a large 2MB L2
cache. The GPU accelerator in the Tegra X1 SoC contains 256
single-precision floating-point Maxwell cores that run at 1 GHz
supported by a 64 KB L1 cache. This translates into a theoreti-
cal throughput; 256 x 1 GHz CUDA cores = 256 Gops/s (float,
multiply+add counted as one operation). The Jetson TX1 board
consumes 10—-12 W power under varying load.

e DSP: The TI Keystone 2 board (66AK2H12) ships with dual-
core ARM (Cortex-A15) with 2 MB shared L2 cache running at
1.4 GHz clock. The Keystone II has eight-core C66 DSPs that
can process 32 16x16 integer multiply-accumulate operations
per cycle in VLIW fashion running at 1.4 GHz. This gives the
Keystone II slightly higher processing capacity than the GPU;
32 x 1.4AMHz x 8 C66 cores = 358.4 Gops/s. The 66AK2H12
Keystone II board consumes 11-14 W under varying load.

o Multi-Core + NoC: The multi-core Epiphany-III chip relies on
a low-end Zynq SoC with an ARMv7 32b CPU as a front-end
for programming and data transfers. The Artix-class (low-end)
FPGA logic is used to provide a configurable fabric to connect



Table 4: Performance-Power specs of various SoC boards. FPGA
and DSP operations are fixed-point, while GPU and Multi-core
operations are single-precision floating-point.

Platform Jetson TX1 Keystone II  Parallella ZC706

GPU DSP Multicore  FPGA
Tput. (Gops/s) 256 358.4 10.5 11.5
B/W (GB/s) 25.6 12.8 1.3 6.4
Power (W) 10 14 4 19
Efficiency 25.6 25.6 2.6 0.3
(Gops/s/'W)

the data and control via eLink connections to the Epiphany chip.
The multi-core Epiphany-III SoC supports 16 eCores that im-
plement a simple RISC-inspired instruction set and has a uni-
fied 32KB scratchpad memory per eCore to store both program
code and data. The eCores run at 667 MHz and are optimized for
32b floating-point multiply-add operations with limited support
for 32b integer operations. The Epiphany can deliver roughly
%th the GPU throughput; 16 x 667 MHz = 10.5 Gops/s (float,
multiply-add counted as one operation). The Parallella board
consumes 3—4 W of power (inclusive of the supporting FPGA).
o FPGA: The Zynq FPGA SoC on the ZC706 ships with dual-
core ARMv7 32b CPU (Cortex A-9) with NEON support and
a slow 667 MHz clock frequency. The FPGA on the SoC uses
the higher-performance Kintex-class fabric with 218K LUTs,
437K FFs, 900 1825 bit DSP blocks and 2180 KB of sepa-
rate non-coherent scratchpad memory distributed across multi-
ple discrete Block RAMs. The CPU and the FPGA communi-
cate over AXI busses that can operate at a throughput of 2 GB/s
with shared access to the 1 GB off-chip DDR DRAM. When con-
figured with the 32b fixed-point MXP soft vector processor for
pixel processing, we achieve a throughput of 64-lane x 180 MHz
=11.5 Gops/s. This is a paltry 2—10th the throughput of the GPU,
further compounded by the lack of fused multiply-add support.
The peripheral-rich ZC706 board consumes 19 W under load.

We present the calculations from Table 4 as a roofline plot in
Figure 3 and see the clear separation between the different plat-
forms. The roofline plot allows us to quickly identify whether a
given platform will be memory bandwidth bottlenecked or com-
pute limited based on arithmetic intensity of the user application.
Arithmetic intensity is the inverse ratio of bytes fetched from ex-
ternal DRAM to the number of arithmetic operations performed on
this fetched byte. For instance, 2D convolution of kernel k£ x k will
have an arithmetic intensity of k2 i.e. per pixel fetch from DRAM
will be followed by k2 multiply-add operations. The FPGA and
Epiphany platforms appear the weakest of the set of systems we
consider with the Keystone II DSP dominating the race at high
arithmetic intensities. The TX1 GPU has higher DRAM bandwidth
(steeper slope in Figure 3) which works well for ConvNet scenar-
ios where the ratio between compute and memory access is lower
(smaller values of kernel size k). The Parallella and FPGA plat-
forms are better balanced in terms of ALU peak throughput and
DRAM bandwidth, and allow the application to quickly saturate
the ALUs with arithmetic intensity as low as 2-3 operations/byte
transferred. While GPUs enjoy widespread popularity among deep
learning consumers [13], the TI DSP is a formidable competitor.
The ability to explicitly manage memory transfers, and account for
all operations on a per-cycle basis during mapping and implementa-
tion allow DSP-based platforms to outperform the GPU-based SoC
as we will see in subsequent sections.

o
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Figure 3: Roofline analysis based on Peak Gops/s (horizontal
lines) and DRAM bandwidths (diagonal lines). The DSP
dominated peak throughput while the GPU has greater bandwidth.
FPGA and Parallella have much lower peak throughputs.

3. EXPLOITING PARALLELISM

Based purely on operation complexity, most mappings of deep
learning computations will spend a bulk of their time performing
2D convolutions. Furthermore, the sequencing of various convolu-
tional layers will generate large amounts of memory traffic due to
dependencies of inter-layer intermediate maps, while also needing
memory management for storing these maps. Thus, when optimiz-
ing convolutional networks for selected embedded platforms, it is
important to have a strategy for (1) parallelizing the problem, (2)
data storage management for intermediate maps, and (3) commu-
nication management for moving inter-layer results. Unlike solu-
tions (FPGAs [10, 14, 7], GPUs [13]) using abundant hardware
resources, embedded solutions are severely constrained by the lim-
ited capacity of logic, on-chip memory and communication band-
width. This presents a unique challenge for code generation and
optimization.

3.1 Parallelism

Fortunately, ConvNets offer parallelism at various levels of gran-
ularity that can be effectively mapped to accelerators:

1. Pixel-level: There are naturally data-parallel operations in con-
volutional kernels that can easily match the SIMD or VLIW or-
ganizations of ALUs in the various accelerators. Each pixel can
be processed in parallel provided sufficient storage and band-
width for neighbouring pixels is available. The platform-optimized
libraries directly use VLIW or SIMD intrinsics as appropriate to
exploit this obvious parallelism to the fullest extent. A represen-
tative timing schedule is shown in Figure 4.

Row Row
Cycle
% Pixel-Op ----- Pixel-Op | Pixel-Op [------1 Pixel-Op
‘2| Pixel-Op r----- Pixel-Op | Pixel-Op |------1 Pixel-Op|
% Pixel-Op ----- Pixel-Op | Pixel-Op Pixel-Op
Oyl Pixel-Op r----- Pixel-Op | Pixel-Op |------1 Pixel-Op

Time

Figure 4: Pixel-level parallelism through SIMD evaluation.

2. Row-level: We have concurrent streaming parallelism in most

stages of the ConvNet flow, that allows us to perform parallel
work on pixels within a row and also orchestrate optimized data
movement in larger DMA chunks for best memory system per-



formance. A timing schedule of such an overlapped operation
is shown in Figure 5 where DMA reads and writes are over-
lapped with compute. Pixel operations in 2D convolution and
pooling stages require access to neighbouring pixels, and row-
level storage greatly helps avoid expensive DRAM accesses. The
DSP and GPU memories and the FPGA MXP scratchpads allow
multi-ported concurrent operation while the Epiphany provides
a NoC with explicit message-passing.
DRAM

B/W Limited ALU

e Tput. Limited
Row DMA (/ Row DMA Row DMA

/
T Row Ops Row OpsL Row OpsL
' RowDMA | RowDMA T RowDMA

Time

Figure 5: Row-level streaming parallelism through concurrent
DMA/compute processing. DRAM B/W < ALU Tput.

3. Dataflow: When composing multiple layers of the deep learning
computations, it is often possible to serially evaluate dependent
functions at the granularity of rows instead of image frames. This
optimization allows on-chip caching of data between the depen-
dent functions without spilling over to the off-chip DRAM. This
improves performance while also reduces energy use by elimi-
nating DRAM accesses for storage of intermediate maps. In Fig-
ure 6, we illustrate how 2D convolve and pooling optimization
can often be fused. The efficacy of this optimization is purely
limited by the size of on-chip storage on the various SoC plat-
forms.

[Row DMA[Row DMA| [Row DMA[Row DMA]

RowOps | Row Ops [RowOps | Row Ops
2D Conv 2D Conv Pool Pool
X Row DMA]Row DMATRow DMA]Row DMA|Row DMA]Row DMA
Time
Row DMA Row DMA
Row Ops | Row Ops | Row Ops | Row Ops
2D Conv’ Pool 2D Conv' Pool
\1 Row DMA| \1 Row DMA

Time

Figure 6: Dataflow optimization of dependent row-oriented
functions. Interleaved operation across consecutive functions
possible when dependencies are linear.

4. Function-level: Finally, since each layer must generate multi-
ple feature maps, those can also be entirely parallelized across
maps. This must be managed with care as inter-layer map copies
require copious amounts of communication bandwidth. For data
that must be spilled out to off-chip DRAM:s for inter-function de-
pendency, the DSPs and GPUs use a cache hierarchy while the
FPGA and Epiphany require low-level DMA routines. For multi-
core, DSPs and RISC machines, the first stage of parallelizing
the code is to exploit this function-level parallelism across maps
to distribute the work across cores.

3.2 Memory Storage

For small-scale convolutional networks, such as MNIST and CI-
FARI10 (shown earlier in Table 1), we are able to fit the interme-
diate maps and temporary results in on-chip RAMs of most SoCs.
However, larger networks, such as Caltech101 and ImageNet, have
memory requirements that exceed available on-chip capacity. The
Jetson TX1 manages its memory through cuDNN and Caffe. While

the TI DSPs can be configured to use a cache hierarchy, the perfor-
mance was so poor, we set them up as SRAMs and explicitly han-
dled memory transfers ourselves. Here, the 6 MB MSMC RAMs
are shared across all eight DSP cores. Thus, apart from the GPU,
all other platforms require explicit memory management (scratch-
pads) with no caching or virtual memory support.
Where required, we use a patch-based
partitioning strategy, as shown in Fig-
ahbet ure 7, to decompose larger image frames
region into smaller sizes that can operate en-
tirely on-chip with ease. This requires
an extra redundant copy of the image
border ghost pixel region around each
patch to enable fully on-chip operation
when the filter kernel window falls out-
side the patch region. This allows multi-
ple depths of the convolutional network
to be calculated for that patch without any inter-patch communica-
tion i.e. fully on-chip. While the idea of decomposing images into
patches is nothing new, our contribution is the design of an auto-
tuning optimization backend that balances the benefits of fast on-
chip processing possible via small patch sizes, vs. the extra DMA
copying times for redundant data in choosing a patch-size for each
SoC platform. The FPGA MXP vector processor only provides
a configurable 32-256 KB scratchpad, thereby forcing low-level
DMA calls even for small network sizes. We are able to over-
lap most DMA calls with useful compute and minimize the per-
formance impact of this resource constraint. For the Epiphany III
SoC, we have a fixed allocation of 32 KB x 16 cores and can eas-
ily accommodate the small convolutional networks onchip. We are,
however, required to divide the SRAM space between instruction
and data memories manually ourselves. Inter-layer traffic is di-
rectly supported by the NoC on the Epiphany. The lower energy
implementation possible on the Parallella is directly attributed to
the on-chip communication hardware and conscious design of data
transfers by the programmer.

Figure 7: Patching.

4. CAFFEPRESSO FLOW

In this section, we describe CaffePresso, our Caffe-based code-
generation and auto-tuning framework along with platform-specific
optimization notes that are relevant for integrating the complete so-
lution and providing a template for generalizing to other platforms.

4.1 Mapping methodology

Our mapping flow, seen in Figure 8, is decomposed as follows:

o Caffe input: We use the open-source Caffe [9] deep learning
framework as a frontend in our experiments. Caffe accepts rep-
resentations of different convolutional networks in Google Pro-
toBuf format (prototxt files) to facilitate training (backward
pass) and execution (forward pass) on CPU and GPU platforms
out-of-the-box. We achieve best-published accuracies (70-99%)
for each dataset and associated ConvNet configurations.

e Code-Generation: Caffe implements various layers required for
assembling a ConvNet structure on a CPU. cuDNN [4] bindings
allow Caffe to target the NVIDIA GPUs. We generalize the
API to support multiple platforms and permit smooth integrat-
ing of different architecture backends beyond CPUs and GPUs.
We compile the Caffe protobuf specification of the ConvNet
structure into low-level platform-specific API calls for individ-
ual Caffe layers such as convolutions, subsampling, and pooling.
These low-level routines (Caffe layers) are nested for loops that
are hand-written in parametric fashion to expose optimization



Platform-specific
leaf-level API

Platform-specific
Constraints

Trained Kernel
Weights Imdb

v v
Code Auto-Tuning
Generation Layer

Convolutional

Network Spec. .prototxt
name: "Example" input: "data"
input_dim: 1 input_dim: 1
input_dim: 28 input_dim: 28

layer {
name: '"convl" type: "Convolution"
bottom: "data" top: "convl"
convolution_param {
num_output: 20

K =5,

kernel_size: 5 # }’
3} {.1yrType = POOL,
b .winSize = 2,
layer { .stride = 2,

name: "pooll" type: "Pooling"
bottom: "convl" top: "pooll"
pooling_param {
pool: MAX
kernel_size: 2 3}
stride: 2 ’
¥
};

const CAFFE_PARAM_T table[LAYE!
{.lyrType = CONV,

.n0utMaps = 20
—

.poolType = MAX_POOL,

{.lyrType = ACT,
.actType = RELU,

) {.1yrType = SOFTMAX,
}

“
for(j=0;j<H;j++)
for(i=1;i<H;i++) {
edma_transfer(src,...);
for (k = 0; k<NUM_MAPS; k++)
for (row=0; row<N; row=row++) {
// convolve-add
Convi1x11();
DSP_add16_shift();
// pooling
for (col=0; col<N; col=col++)
img [(N/2)*drows] [dcols] =
DSP_maxval (¢map [0] ,K*K) ;
// relu
for (col=0; col<N; col=col++)
imglcol]l = ((imglcol]<0)?
0 : [coll);

edma_transfer (maps, ...);

b

Figure 8: High-Level View of the CaffePresso flow. (Showing dummy prototxt, intermediate header, and skeleton DSP code.)

hooks to the auto-tuning flow. This translation of the ConvNet
specification into platform-specific code forms the basis of our
automated code-generator.

o Auto-Tuning: As the low-level APIs are parameterized in terms
of various options such as patch sizes, DMA burst lengths, stor-
age choices in the memory hierarchy, and even compiler options,
we explore a large space of possible solutions before determining
the optimized mapping. This search is handled by our auto-tuner
that tailors the final mapping for a given ConvNet specification
to the target platform.

4.2 Platform-Specific Optimization

We use platform-specific optimizations to develop the paramet-
ric leaf-level APIs that can support any ConvNet specification. This
recipe for optimization is generalizable to similar high-level orga-
nizations (VLIW, SIMD, NoC-based Multi-cores) and constraints.

1. Before code generation, we first identify the performance limits
of each platform through micro-benchmarking to understand the
ALU processing and memory constraints beyond the datasheet
specifications of Figure 4.

2. This helps us determine a high-level parallelization and partition-
ing strategy for the various maps per layer as well as the memory
organization for map storage and communication mechanisms
for inter-layer movement of maps.

3. The optimizations identified in Section 3 are then encoded into
each implementation as appropriate. In particular, these opti-
mizations target scratchpad-based and NoC-based platforms where
movement of data must be explicitly specified.

4. Finally, our auto-tuning framework chooses specific implemen-
tation parameters and degree of optimizations to fully customize
the mapping for each platform and ConvNet combination. We
expose optimization hooks that enable this tuning and support
automated selection of suitable implementation parameters for
best performance. For instance, we consider optimizations such
as patch sizing, DMA burst length, loop unrolling, partition-
ing granularity, and scheduling choices to improve performance.
These parametric hooks are automatically explored through the
auto-tuner during the optimization process.

We now discuss the individual backends and platform-specific

void dsp_conv_layer(int K, int N, int scale,
const short#* kernel, short* src, short* dest) {
// load input patch
edma_transfer(src,...);
// TI’s imglib operates row-by-row
for (row=0; row<H-K+1; row++) {
IMG_conv_3x3_i16s_c16s ((src+row*N), (dest+rowxN),
N-K+1, N, kernel, scale);
}
// write input patch
edma_transfer(dest,...);

Figure 9: DSP Code Sketch for conv.

optimization notes on implementation issues encountered during

mapping. The coded sketches hide some detail in favor of clarity.
(a) TI DSPs (Figure 9): We program the TI Keystone DSP

boards using a C-based API supported by optimized image pro-
cessing libraries for leat-level routines.

o Memory Management: Off-chip memory communication has
a significant performance penalty, which encourages us to uti-
lize the on-chip shared memory to the fullest extent. We write
our own memory allocator that allows us to store intermediate
maps in the local 6 MB MSMC RAM. The multi-ported MSMC
RAM also allows us to achieve fast data transfer of intermedi-
ate maps between DSP cores (vs. NoCs). With careful memory
management and hiding off-chip DMA transfers by overlapping
with compute, we are able to improve performance significantly.
Clever use of the onchip MSMC RAM is a key ingredient of
delivering high performance on this DSP.

o Patch-Based Map Partitioning: This optimization is the same
patching optimization on the Parallella described earlier. Here,
the advantage over the Parallella is a significantly greater avail-
ability of on-chip memory that allows us to use larger patch sizes,
which results in better utilization of the ALU resources.

o Improving ALU utilization: For hand-written pooling routines
on the DSP, we unroll the instructions, to reduce loop overheads
and achieve better arithmetic intensity. Convolution operation on
the patches directly use DSP intrinsics via the IMGLIB library.

e Data Type: While the C66 DSP supports single-precision
floating-point operations, the fixed-point peak is 2x higher.
Hence, we use fixed-point IMGL1ib routines for pixel-processing



void fpga_conv_layer(int K, int N, int NUM_MAPS,
int16_t #*src, intl16_t *dest, intl16_t *kernel) {
// set vector length for all rows of NUM_MAPS
vbx_set_v1(N * NUM_MAPS);
// loop over rows
for(row = 0; row < H-K+1; row++) {
// double buffer
vbx_dma_to_vector(src[row] ,src+(N-K+1)*row,.);
// loop over kernel
for(i = 0; i < K; i++) {
for(j = 0; j < K; j++) {
// Load kernel[i][j] into scratchpad
vbx_dma_to_vector (kernel[1],kernel [i*xk+j+1],.);
// Multiply and add with pointer offset
vbx (VVHW,VMUL, prod, kernel[0], src[il);
vbx (VVW, VADD, acc, acc, prod+j);
// Wrap kernel buffers
¥
}
// writeback results
vbx_dma_to_host(dest+(N-K+1)*row,acc,...);

Figure 10: FPGA/MXP Code Sketch for conv.

without compromising accuracy of the computation.

(b) FPGA MXP Engine (Figure 10): Our preliminary imple-
mentation on the Vectorblox MXP soft vector engine ran very slow
due to unforeseen bottlenecks at various system interfaces. For in-
stance, a naive prototype implementation (28x28 pixels, L1=50,
K1=7, L2=128, K2=5, 10 L1—L2 links) took 107 ms/frame.

o AXI instruction dispatch latencies: The ARM-FPGA AXI in-
terface for instruction dispatch is relatively high, particularly
when compared to the short vector lengths being processed in
embedded deep learning datasets. Avoiding this bottleneck re-
quired restructuring the parallel vector operation by fusing to-
gether multiple maps and amortizing instruction dispatch cost
across multiple maps at once.

o Kernel Access: The MXP processor fetches scalar operands in
scalar-vector operations (i.e. pixel-kernel multiplication and ac-
cumulation filters) from the ARM CPU resulting in significant
slowdowns. This required pre-assembling kernel coefficients
into long vectors with repeated scalar entries on the MXP using
vector copies to enable vector-vector processing. At the expense
of a few extra bytes, we reduce time to 22 ms/frame when com-
bining this optimization with the previous one.

o Instruction reordering: We further manually reorganize the or-
der of VMUL and VADD operations to avoid sequential depen-
dencies in the vector engines. DMA transfers were carefully
scheduled to exploit double buffering optimization. Using these
optimizations further shaved runtime down to 13 ms/frame.

o CPU-FPGA partitioning: While the 2D convolution and pixel
processing tasks perform very well on the FPGA, the final clas-
sification stages consisting of multiple fully-connected layers
are faster on the ARM than the MXP. In this scenario, we split
the deep learning layers between the CPU and the FPGA while
ensuring overlapped DMA transfer of the last pixel processing
stages. The pooling layer with stride length and kernel size other
than 2 is less efficient on MXP. We run pooling on the CPU.

(c) Parallella (Figure 11): The Epiphany eCores are pro-
grammed directly in C with special APIs for handling data move-
ment. The host ARM processor loads the binaries and orchestrates
data movement and overall program flow.

e Map Parallel: At a high level, we adopt a map-parallel ap-
proach, where each of the 16 Epiphany eCores shares the work-
load of evaluating all the maps in a given layer in parallel.

o On-chip NoC: When the deep learning network is small enough

void epiphany_conv_layer(int K, int H, float scale,
float *kernel, float *src, float *dest) {
//load patch from DRAM
e_dma_copy(src,...);
// loop over rows
for (row=0; row<H-K+1; row++) {
// loop over columns
for (col=0;col<H-K+1;col++) {
float sop = 0.0f;
//convolution - KzK unrolled
sop += kernel[0] * src[ptr[0]];
sop += kernel[1] * src[ptr[0]+1];
sop += kernel[2] * src[ptr[0]+2];

sop = sop*scale;

x(dest + out_ptr) = sop;

// update Tow pointers

¥
¥
//store output map patch to DRAM
e_dma_copy(dest,...);
}

Figure 11: Epiphany Code Sketch for conv.

(e.g. MNIST/CIFAR10), we can fit the entire stack on the on-
chip memory and model the communication between different
layers using the on-chip Epiphany NoC. The on-chip NoC has a
significant power and performance advantage over DRAM trans-
fer channels, which is one of the main reasons why we observe
very good performance with small deep learning datasets.

e Data Type: The Epiphany supports single-precision floating
point operations, and is, in fact, optimized for floating-point
arithmetic. We could potentially reduce memory storage costs
by using 16b fixed-point data types, but this comes at a perfor-
mance cost. This is due to the e—gcc compiler automatically in-
serting expensive type-casting operations to upgrade precision to
floating-point. Hence, we use floating-point types for all maps.

o Patch-based Map Partitioning: If intermediate map storage ex-
ceeds available on-chip memory, we use a patching approach,
where only a small patch is transferred to on-chip memory. We
statically determine the largest patch size that we can accommo-
date on-chip for a given network specification based on alloca-
tion of instructions and data on the 32 KB scratchpad/eCore.

o DMA optimizations: On the Epiphany, DMA read bandwidth is
3x smaller than DMA write bandwidth (wider NoC). To exploit
this, we flatten our 2D patches into 1D contiguous structures and
issue longer burst DMA reads instead.

o Instruction unroll: On the eCores, the main workhorse opera-
tions are the 2D convolutions. In order to achieve ideal perfor-
mance, we parametrically unroll the multiply-add operations in
the 2D convolutions to fully utilize the floating-point units. We
balance the increased instruction storage costs due to unrolling
with reduced space for data (thereby increased DMAs) as both
data and instructions compete for space in the same scratchpad.
(d) NVIDIA GPU: For the GPU implementation, we use the

optimized cuDNN library that lowers [4] convolutions into highly-

parallel SIMD matrix multiplication operations. Matrix arithmetic
based on BLAS routines are some of the fastest operations possible
on a GPU due to abundant SIMD parallelism and register avail-
ability. They are not directly applicable to other platforms due to
different granularities of the ALU fabric. There have been algo-
rithmic modifications in libraries from Nervana systems that have
shown to outperform cuDNN for small filter sizes such as 3x3.

Algorithmic changes are beyond the scope of this paper and would

affect other architectures as well.
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Figure 12: Comparing Throughput and Energy Efficiency for various platforms and ConvNet configurations. Keystone II DSP dominates
performance and energy efficiency in all cases. Jetson TX1 only starts catching up for larger configurations.

5. RESULTS

In this section, we describe our experimental outcomes of map-
ping and optimizing ConvNet configurations on various embedded
platforms. For the ARM CPU measurements, we compile our C
code with the —03 switch. This enables NEON optimizations and
vectorizes appropriate loops. This is true for vectorized loads/s-
tores for memory transfer to the accelerators, and fast evaluation
of the final fully connected layers that is retained on the host CPU
for MXP (FPGA) and Epiphany (Multi-core) scenarios. For MXP
acceleration, we use the vector API that is compiled directly as
bare-metal C code. We use the PAPI v5.4.0 profiling library on
the ARM, CUDA timers for the GPU, MXP hardware timers on
the FPGA, hardware timers in the Epiphany-III SoC, and platform-
specific timing measurement APIs for the DSPs. These measure-
ments are conducted by averaging the measurements across hun-
dreds of Caffe iterations to minimize measurement noise. We use
the Energenie power meter for measuring total system power under
60s steady-state load.

5.1 Overall Performance and Energy Trends

In Figure 12, we present combined trends for performance
and energy efficiency across platforms and ConvNet architectures.
Across all configurations, the Keystone II DSP offers the best per-
formance and energy efficiency. The gap over other architectures
is as much as 4-5x for smaller ConvNets such as MNIST and CI-
FARI10. For larger configurations such as Caltech101, the GPU
manages to close this gap. Our DSP routines for pooling are a
bottleneck and the DSP loses its lead for pooling-heavy ConvNets
such as Caltech101. The Parallella implementation is surprisingly
competitive for MNIST and CIFAR10 where all intermediate maps
can be stored entirely within the 32 KB scratchpads/core. How-
ever, for larger and more complex ConvNets, we are forced to of-
fload storage to DRAM losing both performance and energy effi-
ciency. The FPGA platform is never particularly competitive due
to constrained DRAM bandwidths and limited ALU peak. The low
efficiency of the GPU for small ConvNets is primarily due to the
CUDA launch overheads, and lack of low-level control of mem-
ory transfers (CUDA-compatible GPUs do allow cache prefetch in
__shared__ 64 KB memory). In contrast, all other architectures
offer complete control over memory DMAs thereby providing an-
other precise and predictable degree of freedom for optimization.

5.2 Impact of ConvNet Complexity

In Figure 13, we show the variation of the runtime as a function
of the total number of arithmetic operations for different ConvNet
architectures. Here, the operation counts on the x-axis are taken
from Table 1. For a given ConvNet architecture, the total num-
ber of operations mainly depends on (1) number of feature maps
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Figure 13: Performance Scaling Trends (left to right: MNIST,
CIFAR10, STL10, ImageNet, Caltech101).
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Figure 14: Energy Scaling Trends. (left to right: MNIST,
CIFAR10, STL10, ImageNet, Caltech101).

in each layer, (2) the convolution kernel size and (3) image resolu-
tion. All platforms exhibit mostly linear scaling in runtime when
increasing operation counts. The Parallella starts off performing
better than the FPGA at low operation counts and then generally
gets worse for more complex configurations. This is primarily a
result of fusing map computations into long high-performance vec-
tor operations (amortized vector launch overheads), and explicit
scheduling of longer DMA operations (amortized DMA startup
cost) on the FPGA. The Jetson TX1 GPU starts off with high run-
times for smaller problem sizes. This indicates poor utilization of
hardware resources for smaller datasets with limited control over
performance of small memory transfers, and CUDA launch over-
heads. DSP runtimes are significantly better at low ConvNet com-
plexities as a result of tight VLIW scheduling of ALU operations
and precise control of DMA memory traffic. However, the lack of
optimized pooling implementations allows the GPU to match DSP
performance at the largest problem size (Caltech101).

When considering energy efficiency in Figure 14, we see a



clearer separation of trends across the various platforms. The
ZC706 FPGA platform with its 19 W power draw is clearly the least
efficient of the set of systems. In contrast, the lower power 3—4 W
Parallella board offers competitive energy efficiency for smaller
ConvNets when DRAM transfers for intermediate maps are absent.
As before, the DSP beats the GPU in energy efficiency for almost
all cases with larger wins for smaller ConvNets. The GPU matches
the DSP efficiency only for the largest ConvNet configuration.

5.3 Accelerator Efficiency

In Figure 15 and Figure 16, we visualize the hardware usage ef-
ficiency (fraction of ALU and DRAM B/W peak actually achieved)
of all platforms for different configurations. The theoretical peaks
are identical to the ones shown earlier in Figure 3 and Table 4.
Here, we clearly see that the DSP implementation makes the most
efficient usage of the ALU resources (=40%) for the smaller Con-
vNets. The use of VLIW intrinsics and careful DMA operations
are key to unlocking this efficiency. The DSP DRAM efficiency is
25-35% for larger datasets where trained weights must be loaded
from the DRAM. For smaller datasets, the complexity of mem-
ory access is on par with the computation intensity, which results
in low utilization of Jetson TX1’s GPU resources (<1%). For
larger problems the GPU achieves 10% ALU throughput but never
taxes the DRAM B/W due to optimized GEMM (BLAS matrix-
multiplication) formulation in cuDNN and high peak bandwidths.
There is an odd spike (=55%) in Parallella efficiency for MNIST,
which can be attributed to relatively small inter-layer core-to-core
communication overheads, as MNIST layer 1 only consists of 5
maps. However, the Parallella is generally very slow and does
not stress the DRAM either due to compute bottlenecked opera-
tion. For the more complex ConvNet configurations such as Cal-
techl101 and ImageNet, most platforms are saturated at 5-10%
ALU efficiency. The ZC706 exhibits steadily increasing DRAM
B/W efficiency as all intermediate maps are explicity transferred
to/from scratchpad resulting in high B/W demand on a relatively
poor DRAM interface. Overall, the large number of maps, irreg-
ular DMA traffic, and depth of the layers results in poorer ALU
utilization for complex ConvNets.

5.4 Runtime Breakdown

We can further understand the source of performance limits from
Figure 17 (CIFAR10). The 2D convolution time dominates overall
time in most cases as expected. This is particularly severe for the
FPGA MXP mapping due to lack of support for fused multiply-
add operations and higher penalty for scalar-vector operations. For
the Keystone II DSP, a larger fraction of time is spent in the pool
stage. This computation is not natively supported through intrin-
sics, leading to poorer hardware utilization. The GPU and Par-
allella performance breakdown match expectations with the slight
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Figure 15: Achieved Gops/s (%) efficiency.
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Figure 16: Achieved Memory B/W (%) efficiency.

advantage for pool on the GPU, which can be attributed to higher
bandwidth to the shared RAMs.

5.5 Understanding Performance Tuning

In Figure 18, we represent the impact of patch size on perfor-
mance (Gops/s) of the 2D convolution phase. In particular, this
analysis is used by our optimizer to select the best patch size per
platform when decomposing the implementation to exploit high on-
chip bandwidths. We conduct experiments with a single layer of the
network with 10 maps to illustrate the choice of best configuration.
o As expected, the GPU outperforms all platforms and peaks at

35 Gops/s for larger patch sizes and kernel widths. Even when

operating over smaller kernels, the throughput is 10 Gops/s.

e The Keystone II DSP mostly matches performance of the GPU
with a slightly lower peak throughput of ~20 Gops/s. There is
also a saturation in performance for the 9x9 kernel as this is not
directly available in IMGLIB and composed from a more com-
plex 11 x 11 version that is available. For the smaller kernel sizes,
performance drops to =5 Gops/s. While these numbers are lower
than equivalent GPU measurements, overall DSP performance is
aresult of optimized eDMA transfers and other optimizations.

e Parallella shows characteristics that are starkly different from the
other boards. The performance peaks for small patch size and
large kernel sizes because (1) the ops/pixel is higher for larger
kernels as seen in Caltech101 behavior in Figure 15, and (2)
amount of data transfer is lower for smaller patches. This clearly
indicates the bottleneck in data transfer when we have low arith-
metic intensity (ops/pixel are less).

e The ZC706 MXP implementation saturates at a paltry
1.5 Gops/s. We see that the MXP throughput increases with the
image width before saturating. We observe negligible improve-
ments for larger kernels. The lack of fused multiply-add is the
key culprit alongside kernel unrolling and loading overheads.
These experiments supplemented by other experiments on num-

ber of maps and DMA transfer time help us to decide the patch
size for given kernel size and number of maps to consider in each
iteration that optimize the overall performance. Beyond patch-size
selection, our performance tuning framework also explores DMA
transfer scheduling optimizations, compiler switches, and interme-
diate map storage strategies to fully optimize the mappings.
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Figure 17: Breakdown of total runtime (CIFAR10 dataset).
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6. CONCLUSIONS AND DISCUSSION

We develop CaffePresso, a Caffe-compatible code generation
and auto tuning framework for mapping various embedded-friendly
ConvNet configurations to accelerator-based SoC platforms. We
found the TI Keystone II SoC (28nm) outperforming all other or-
ganizations including the NVIDIA TX1 GPU (20nm) for all the
ConvNet configurations tested in this paper. For lightweight Con-
vNet configurations such as MNIST and CIFARI10, the DSP and
Epiphany SoCs offer competitive performance and energy effi-
ciency. As the complexity of the ConvNet configurations increase,
the GPU catches up and but still is unable to beat the DSP. The
DSP performed particularly well as our framework was able to ex-
ploit the high-bandwidth on-chip SRAMs effectively through auto-
generated low-level DMA schedules, thereby keeping the VLIW
DSP ALUs occupied with useful work (10-40% efficiency).

Overall, we found the cuDNN-based GPU flow to be effortless
to use, with the TI DSP being a close second. The TI DSP suf-
fered from a high barrier to setup the platform for first use unlike
the out-of-the-box experience possible with the NVIDIA GPU. The
MXP vector processor and Epiphany SoCs were hard to program
primarily from the perspective of functional correctness, but were
easy to optimize. We hope our CaffePresso infrastructure becomes
a useful platform and model for integrating new architectures and
backends into Caffe for convolutional network acceleration.

Looking forward, we expect software-exposed architectures
with large on-chip scratchpads (rather than caches), VLIW-
scheduled processing units, and programmer-visible networks-on-
chip (NoCs) to deliver high-performance with low energy cost. Our
framework is geared to take advantage of such SoCs where deci-
sions regarding memory management, code generation, and com-
munication scheduling are under software control, and thus avail-
able for automated optimization.
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