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Abstract—
FPGA-based token dataflow processing has been shown

to accelerate hard-to-parallelize problems exhibiting irregular
dataflow parallelism by as much as an order of magnitude when
compared to conventional compute organizations. However, when
the structure of the dataflow computation is known upfront,
either at compile time or at the start of execution, we can employ
static scheduling techniques to further improve performance
and enhance compute density of the dataflow hardware. In this
paper, we identify the costs and performance trends of both
static and dynamic scheduling approaches when considering
hardware acceleration of SPICE device equations and Sparse LU
factorization in circuit graphs. While the experiments are limited
to a case study, the hardware design and dataflow compiler are
general and can be extended to other problems and instances
where dataflow computing may be applicable. With this study,
we hope to develop a quantitative basis for the design of a hybrid
dataflow architecture that combines both static and dynamic
scheduling techniques. We observe a performance benefit of 2–
4× and a resource utilization saving of 2–3× in favor of statically
scheduled hardware.

I. INTRODUCTION

Performance and power requirements of a computation
mapped to physical hardware are dependent on application
characteristics and the underlying physical costs of com-
munication, memory storage and computation. One impor-
tant characteristic that affects implementation costs is ap-
plication parallelism. Mainstream multi-cores and GPUs are
able to manage coarse-grained, regular and embarrassingly
data-parallel problems quite easily. However, solutions for
managing irregular and fine-grained forms of parallelism are
still broadly elusive. Dataflow may be one possible solution.
Dataflow architectures, which were pioneered in the early
1990s, provide an alternative form of parallel organization but
have been largely relegated to academic curiosity. The key
feature of dataflow machines is the ability to exploit large
amounts of physical hardware resources to deliver scalable
performance for certain applications through asynchronous de-
coupled operation and communication of dependencies using
“tokens”. These architectures support distributed dataflow trig-
gering to launch parallel computations in a manner that does
not require expensive synchronization (e.g. program counter)
and are also able to tolerate variable communication and
memory delays in the system. This execution mechanism is a

good match for irregular and fine-grained parallel applications.
In these architectures, computations are described as dataflow
graphs where the nodes represent computation (e.g. arithmetic
and/or logical operations) and edges represent dependencies
between operations (e.g. communication). Despite their fa-
vorable characteristics, dataflow architectures were unable
to compete with the density and scaling advantages made
possible by microprocessors (e.g. Intel CPUs). However, there
is a need to revisit the dataflow architecture models once
again as we discover that a broad class of important hard-to-
parallelize problems defy mapping to multi-cores and GPUs.

A canonical view of dataflow computing involves tokens
and dynamic scheduling to permit distributed, decoupled eval-
uation of parallelism in the problem. This view simplifies
hardware and compiler design and allows scalability to newer
technologies and capacities. However, there is an overhead
associated with supporting this flexibility. In this paper, we in-
vestigate the cost/performance gap between traditional dynam-
ically scheduled dataflow and statically scheduled alternatives.
We expect static scheduling to offer improved performance
due to better opportunities for global optimization of the
processor design while, at the same time, potentially using
fewer resources. We recognize that static scheduling may not
be possible in all contexts particularly where the dataflow
graph structure is unknown until much later in an execution
lifetime. Additionally, there is no clear classification for stat-
ically scheduled dataflow in the broader dataflow taxonomy
(See Figure 1 for our attempt). However, it is important
to first understand the extent of cost/performance loss and
identify research directions that may close this gap. We use
the SPICE circuit simulator as a case study and an FPGA-
based implementation platform for exploring these questions
regarding dataflow organizations.

The key contributions of this paper include:
• RTL design and cycle-accurate simulator for evaluation

of simple statically-scheduled and dynamically-triggered
processors implemented as 2D mesh on a Xilinx FPGA.

• Development of a dataflow graph pre-processing engine
for communication-aware distribution of dataflow graphs
on the 2D mesh.

• Development of a static scheduler that includes a greedy
XY router that optimizes and schedules dataflow graphs
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Fig. 1: Dataflow Taxonomy

for a 2D-mesh organized static dataflow processor.
• Experimental framework to characterize and compare

performance of dataflow graphs extracted from the SPICE
circuit simulator across benchmark devices and circuits.

II. BACKGROUND

A. Dataflow Organization Taxonomy

As shown in Figure 1, dataflow architectures can be broadly
categorized into static and dynamic models. We derive this
taxonomy through analysis of the excellent review of different
dataflow architectures presented in [5]. Static dataflow archi-
tectures permit only a single instance of the graph to be active
in hardware at any given time, thereby greatly simplifying
the hardware design [3]. Dynamic dataflow machines [4],
[12] allow multiple instances of the same dataflow graph to
be active at the same time, complicating the token tracking
hardware but generalizing the applicability. Over time, varia-
tions on these ideas have given us newer dataflow derivatives.
Some of the recent proposals [1], [14] involve ideas that
handle instruction placement and issue through a combination
of static and dynamic methods. In this work, we adopt a
different approach that investigates the opportunity for static
placement as well as scheduling (analogous to instruction
issue). A key inspiration for this project is [10] which explores
static scheduling of dataflow graphs for DSP applications
while focusing on reduced complexity of dataflow triggering.
Our work expands the scheduler to include communication
over a shared network into the model and actually quantifies
the performance and cost gap for a case study. Similar to
EDGE [1] and WaveScalar [14] projects, we perform static
instruction placement where our instructions are specialized
node operations customized to the application being accel-
erated. However, depending on our scheduling model, we
issue our instructions either dynamically or statically. For the
benchmark problems we consider (explained in Section IV),
we perform if-mux conversion to eliminate the impact of
divergent control flow on dataflow evaluation and consequently
we do not have to consider the impact of branch divergence in
our static schedule. This important transformation allows static
scheduling of code blocks larger than the traditional basic
block (of hyperblocks [2]), but potentially at the expense of
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extra work. Furthermore, our static scheduling is more general
than VLIW scheduling as it supports non-loop oriented code
as well. The static scheduler allows us to determine the precise
schedule length (runtime) of the dataflow evaluation at compile
time. For dynamically scheduled hardware we have to rely on
a cycle-accurate simulation to report performance.

Computations that are exclusively scheduled through static
techniques are broader in scope than pure dataflow. We see
this research as a stepping stone towards the development of
hybrid dataflow architectures that combine both scheduling
styles together. In this context, WASMII [11] is an early
dataflow overlay architecture for FPGAs that uses the dynamic
scheduling approach for token handling while using a statically
configured FPGA context for programming the dataflow op-
erator. There is also some recent interest in developing FPGA
PE hardware [13] for supporting the EDGE ISA [1].

III. IDEA – HARDWARE CONFIGURATIONS FOR DATAFLOW

In this section, we describe the two competing designs
that can exploit dataflow parallelism using static and dynamic
scheduling. We identify the conditions under which they offer
characteristic performance and consume specific resources.
The dataflow processor is organized as a 2D mesh of dataflow
processing elements (PEs) interconnected with a token routing
2D mesh fabric. Designs of both the PE and router, which we
discuss next, are specialized for the scheduling model used.

A. Dataflow PE Architecture

Dynamically-Scheduled PE: As shown in Figure 2a, the
design of the canonical dataflow processor can be composed of
two coupled hardware blocks: token triggering logic, and the
token generator. The token triggering logic tracks the number
of inputs received by the operator and issues the dataflow
operation when the trigger condition is activated i.e. expected
token count is observed. Inputs to a dataflow node are stored in
a Token memory while the node waits for the other input(s).
After a dataflow operation has been issued, it is committed
to the Output Memory and the node is marked as ready for
dispatch. Under the dynamic scheduling model, the token gen-
erator must select a node for processing among a potential set
of multiple ready nodes. The dataflow operation results of the
chosen node are tokenized and dispatched to the appropriate
destinations. The stored Fanout memory represents the graph
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Fig. 2: Dataflow Micro-architectures using Dynamically-scheduled and Statically-scheduled Hardware Engines
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Fig. 3: Router designs for Dynamically-scheduled and Statically-scheduled Hardware Engines

structure that encodes the required addressing information to
dispatch tokens.

Statically-Scheduled Dataflow PE: We represent the organi-
zation of the statically-scheduled implementation of the same
design in Figure 2b. We observe several structural simplifi-
cations that can lower implementation cost and improve fre-
quency. The complete processor execution is known a priori –
the processor merely executes a set of pre-determined steps for
both input and output handling. Thus, we store the execution-
schedule in ROMs that are loaded at the start, thereby eliminat-
ing any need to make dataflow triggering decisions at runtime.
Significant savings can also be obtained from the storage costs

associated with representing the dataflow graph in memory.
As shown in Figure 4, we can see that static processing only
requires send and receive memories with associated memory
access controls per cycle. For large systems with low schedule
lengths, this can represent a significant saving in memory as
we will discover later in Section VI.

B. Dataflow Router Architecture

In Figure 3, we show the design of the dataflow routing
switches used in both cases. When the dataflow graph is
evaluated dynamically, the packet format includes both data
and address information that is required for the packet to route
over the network to its destination. For statically-scheduled
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implementation, we can eliminate the need to package ad-
dressing information in the packet. This is possible as we can
statically identify the packet dispatch times and exact path
taken through the network at compile time. In the dynamically-
routed switch, we need to buffer the packets and use address
information to route. While this makes the network flexible,
there is an added memory and performance overhead. Instead,
the statically-routed switch requires storage of a statically-
identified context (e.g. instructions for the switch muxes).
This limits the network to only support a particular dataflow
graph at a given time, but greatly simplifies the design and
allows high frequency implementations. There is an additional
limitation of the largest schedule length that may be supported
but with cheap high-density memories, this limit is high
enough for our case study.

C. Hardware Utilization

We generate RTL for the dataflow graphs using cycle-
accurate, C++ descriptions of the dataflow engines (as seen
earlier in Figure 2) compiled using a high-level synthesis
(HLS) toolflow. We compose a parallel dataflow system in a
2D mesh by connecting the processing elements with packet-
switched and time-multiplexed switches depending on the
scheduling model. These switches are also described using
high-level C++ code. We use the Xilinx Vivado HLS com-
piler 2013.4 and Xilinx Vivado 2013.4 to generate RTL and
compile bitstreams for the Zynq Z7010 FPGA chip. Our HLS-
generated clock delays are particularly severe for dynamic
PEs and switches (≈10–15ns) compared to static counterparts
(≈4–6ns). We continue to investigate HLS coding patterns
that may reduce this gap. The key variables that define
hardware usage and performance for the dataflow architectures
are (1) datapath precision and operation counts (for both
architectures), and (2) schedule length (only for the statically-
scheduled architecture). The size of the parallel dataflow
system defines the address width contained in the packet
being routed over the dataflow token routing network. For our
experiments we assume a maximum system size of 16×16
(256 PEs) and an 8-bit packet address. The size of subgraph
accommodated in the PE defines the memory requirements
for storing (1) variables at nodes and edges during dataflow
evaluation (for both architectures), and (2) scheduling context
(for the statically-scheduled architecture). For the purpose
of comparing synthesis results fairly, we fix the nodes and
edges per PE to be 1024. When comparing resource costs,
we measure LUTs (i.e. logic gates), FFs (i.e. registers) and
BRAMs (i.e. embedded memory blocks) utilization on the
FPGA. For Xilinx FPGAs, LUTs can be reprogrammed as
small 32–64b RAMs which we use to store the scheduling
context.

In Figure 6, we show the effect of increasing datapath
precision on processor and routing resources. As expected, uti-
lization increases linearly with increasing precision. However,
we observe a larger relative cost in the switching fabric due to
buffering requirements of packet-switched networks that can
sometimes be tricky to implement correctly on FPGAs using
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Fig. 6: FPGA Hardware Costs for Dynamic Scheduling

High-Level Synthesis. We note that the resource costs for the
network are comparable to those reported in [9] adjusted for
device generation.

The resource utilization of static hardware is shown in
Figure 5 where both the datapath precision and schedule length
are varied keeping the other quantity fixed. No addressing in-
formation needs to be routed in the switching network thereby
lowering wiring requirements. The PE resource utilization
rises rapidly with precision while the routing network costs
stay relatively flat as they are dominated by a schedule length
of 1024. When varying schedule length in Figure 5b, the FF
utilization stays fixed as expected but the LUT counts increase
to accommodate the rising schedule storage requirements.
As future work, when BRAM usage rises above a certain
threshold, we will consider offloading schedule storage to LUT
RAMs instead, thereby keeping resouce utilization balanced.

Finally in Figure 7, we show the ratio of LUT, FF and
BRAM utilization for statically-scheduled and dynamically-
scheduled architectures at 32b precision. We observe a ratio
of 3–7× higher resource utilization for dynamic scheduling
at small schedule lengths of 16 cycles. This is interesting
but largely irrelevant as most dataflow graphs will require
larger schedule lengths. For our experiments we report later
in Section VI, we observe a peak requirement of ≈1K cycles.
Hence, as we increase schedule length to 1024 cycles, resource
costs of the static architecture increase causing a lowering of
the utilization gap down to 2–3× for the various metrics. This
is still a significant gap suggesting an ability to either (1)
accommodate larger system sizes in the same physically-sized
chip when using static scheduling, or (2) lower system costs
by selecting a smaller, cheaper chip.

IV. SPICE CIRCUIT SIMULATOR

In earlier work, we built an FPGA-based application accel-
erator for the SPICE circuit simulator using a hybrid archi-
tecture that combined VLIW, Token Dataflow and Streaming
organizations [8], [6]. We resorted to using the dynamically-
scheduled token dataflow organization for acceleration of
Sparse LU factorization [7] because of our mistaken belief
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that the graph sizes were large and challenging for static
scheduling. In this paper, we rectify our mistake and over-
come the scheduling challenge using a greedy XY router
(as opposed to a traditional shortest-path router) to develop
a new scheduler for dataflow acceleration of both Model
Evaluation and Matrix Solve phase of SPICE. This enables
us to develop a better understanding of performance limits
and cost considerations when engineering application-specific
dataflow machines. Thus we redesign a new SPICE accelerator
that is built predominantly using dataflow techniques while
relegating control-oriented tasks to the streaming subsystem.

A. SPICE Simulation Algorithm

Analog SPICE simulations are time-consuming, hard-to-
parallelize problems that represent a formidable performance
challenge for conventional computing platforms. A typical
SPICE simulation barely uses 1–10% of the CPU processing
throughput.

SPICE simulates the dynamic analog behavior of a circuit
described by non-linear differential equations. SPICE circuit

equations model the linear (e.g. resistors) and non-linear (e.g.
transistors) behavior of devices and the Kirchoff’s Current
Law at the different nodes and branches of the circuit. SPICE
also captures the transient effects of devices such as inductors
and capacitors. SPICE is an iterative non-linear differential
equations solver that repeatedly computes small-signal linear
operating-point approximations for the non-linear elements
and discretizes continuous time behavior of time-varying ele-
ments. This system of equations is represented as a solution
of A~x = ~b, where A is the matrix of circuit conductances, ~b
is the vector of known currents and voltages in the circuit,
and and ~x is the vector of unknown voltages and branch
currents. The simulator updates A and~b from the device model
equations that describe device transconductance (e.g., Ohm’s
law for resistors, transistor I-V characteristics) in the Model-
Evaluation phase. It then solves for ~x using a sparse linear
matrix solver in the Matrix-Solve phase. Typical simulations

Characteristics Model Evaluation Matrix Solve

Graph Complexity ≈10-1K nodes/edges ≈1K-1M nodes/edges
Graph Operations
(ieee64)

multiply, add, sqrt,
divide, exp, log

mult, add, divide

Reuse 1K-1M iterations (benchmark-specific)
Reuse/Iteration 1000s of times Once per iteration
Graph Construction Known at compile

time
Known at start of
runtime

Re-entrant Yes No
Static Schedulability High Low

TABLE I: Characteristics of the Dataflow Graphs

require operating over millions of instantiations of irregular,
floating-point dataflow graphs that represent transistor device
equations as well as large-scale, million-entry sparse matrix
representations of industrial circuits.

B. Dataflow Characteristics
The dataflow graphs extracted from the two SPICE phases

exhibit unique characteristics as shown in Table I. These
dataflow graphs are reused in a different manner motivating de-
sign transformations that make them better suited for dataflow
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architectures. While it is possible to support dynamically-
generated graphs on dynamic dataflow hardware, SPICE
graphs are statically known at compile time or just at the start
of runtime thereby satisfying static dataflow requirements.

Model-Evaluation dataflow graphs are small (10s–100s of
nodes) and structurally known at compile-time since they
are based on device physics equations that are well-known.
However, they are invoked repeatedly (1K–1M times) in a
loop depending on the size of the circuit being simulated.
This re-entrant nature of the graph may motivate a Monsoon-
like architecture with tagged tokens to isolate the individual
invocation. However, we simplify this requirement by per-
forming loop unrolling on the data-independent invocations
and provisioning additional storage to hold the unrolled state.
Additionally, since the device models require a variety of
ALU operations such as multiply, add, divide, square-root,
exponential and logarithm, we create specialized processors
for each operator type and distribute instructions (dataflow
nodes) accordingly.

Matrix Solve graphs capture structure of the circuit and
are substantially larger (1K-1M nodes) depending on the size
and connectivity of the circuit being simulated. These are not
known until the start of the simulation, but once provided,
the structure of the graph stays unchanged throughout the
simulation. Ordinarily, LU factorization with full pivoting will
not generate graphs that stay static in each iteration, but we
perform static analysis on the matrix using the KLU solver
to generate static pivot sequences that do not have any effect
on convergence. This graph construction and scheduling cost
can be a one-time overhead that is charged at the start of
the iterative simulation and gets amortized across 1K–1M
iterations as required by the circuit designer.

C. Opportunity for Static Scheduling

While classic token dataflow organization offers a unique
opportunity for parallelization of the SPICE-extracted dataflow
graphs, we can also map these computations to statically-
scheduled dataflow architectures. This is possible since the
graphs are either known at compile time (for SPICE models
across all executions) or the graphs stay structurally unchanged
throughout the evaluation (for individual instances of SPICE
execution), with only the propogated numerical values being
changed in each invocation.

V. EXPERIMENTAL METHODOLOGY

For our comparison study, we extract dataflow graphs for a
set of SPICE benchmarks circuits and device models. We pick
these benchmarks to cover a range of problem sizes. Dataflow
graphs extracted from sparse matrices are much larger than
those representing device equations and present a different
stress scenario for the dataflow processors. We list the key
properties of the dataflow graphs in Table II. We consider
a range of dataflow graph sizes (including small ones) to
faithfully identify trends.

To program our dataflow processor, we use the flow de-
scribed in Figure 9. We develop a sparse graph pre-processor
flow that constructs and distributes the dataflow graph for
our benchmark dataflow graphs across parallel partitions. For
placement of graph nodes on processors, we use MLPart to
minimize bisection cut. The resulting data structures are copied
over to the memory block in each processing element.

Static Scheduler: In the case of the statically-scheduled
dataflow engines, we also generate a cycle-by-cycle program-
ming context for the dataflow ROMs as well as the switching
fabric. Our static router is a greedy XY router that searches for
the earliest available scheduling cycle for a dataflow edge such

6



Name Nodes Edges Depth

Device Equations
diode_simple 43 58 14
vbic 225 250 34
jfet 91 120 13
hbt 612 669 32
bsim3v32_new 1459 2408 106
Sparse Matrices
bomhof2_circuit_4465.mtx 20654 30094 131
bomhof2_circuit_4222.mtx 8018 11322 72
s208_401.mtx 94 106 19

TABLE II: Benchmark Properties
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Fig. 9: Scheduler Flow

that dependency constraints are obeyed. Unlike [6], [9], this
new static scheduler constrains the space dimension to pure
XY routes (DOR) and explores freedom in the time dimension.
While this is sub-optimal, it is a simple and fast router that
outperforms dynamic scheduling by a healthy margin.

VI. EXPERIMENTAL EVALUATION

We are interested in identifying key performance indicators
and scaling trends for the SPICE dataflow graphs. We vary
the number of dataflow PEs (i.e. size of mesh) and measure
the number of cycles required to route the entire workload.
We report the results of our experiments by comparing cycle
counts for Model Evaluation and Matrix Solve dataflow graphs
extracted from SPICE.

Matrix Solve In Figure 10, we show results for the Matrix
Solve benchmarks graphs. We observe that the dataflow archi-
tecture is not particularly suitable for small benchmarks like
s208_410.mtx while the larger benchmarks show almost
linear scaling in speedup even at large PE counts. Static
scheduling offers as high as 4× improvement in cycles when
compared to dynamic scheduling (Figure 12b) suggesting a
large degree of available parallelism and high scheduling
efficiency when routing the dependency dataflow graph.

Model Evaluation For Model Evaluation graphs, we ob-
serve fairly different scaling trends as shown in Figure 11.
Since the device equation graphs are substantially smaller than
the sparse matrix graphs, we note that performance scaling sat-
urates beyond 16 PEs for almost all devices . In addition, static
scheduling only offers ≈ 2× speedup over dynamic scheduling

for these benchmarks (Figure 12a). Overall speedups saturate
around 16 PEs suggesting that a combination of dataflow
organization and tiling at the optimal dataflow system size
is needed to achieve scalable performance.

VII. CONCLUSIONS AND FUTURE WORK

Dataflow graph size and scheduling efficiency play a key
role in determining the extent of gains achieved by statically-
scheduled dataflow architectures over their dynamically-
scheduled counterparts. For small dataflow graphs extracted
from SPICE Model Evaluation we observe a ≈2× per-
formance benefit for the static implementation. For larger
dataflow graphs generated from particular SPICE circuit ma-
trices, we observe a much larger speedup of ≈4× for the
same comparison. When compounded with a 2–3× smaller
hardware resource costs, we have a much larger compute
density advantage with static scheduling. While the nature of
these results should not be surprising, we identify trends and
correlations that can predict this gap while also comparing
RTL implementation costs.

When scaling to even larger-scale dataflow problem sizes,
we must prepare for challenges associated with: (1) dataflow
graph construction times for exascale problems, (2) hardware
scalability of triggering logic, (3) hybrid integration with
classic ISA control processors, (4) scalable static schedulers.
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(a) Dynamic Scheduling Cycles
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(b) Static Scheduling Cycles

Fig. 10: Performance Characterization of Matrix Solve Dataflow
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(b) Static Scheduling Cycles

Fig. 11: Performance Characterization of Model Evaluation Dataflow
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(a) Model Evaluation
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(b) Matrix Solve

Fig. 12: Comparing Performance of Static and Dynamic Scheduling
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