
A Case for Embedded FPGA-based SoCs in
Energy-Efficient Acceleration of Graph Problems

Pradeep Moorthy, Siddhartha, Nachiket Kapre
Nanyang Technological University, Singapore

nachiket@ieee.org

Abstract—
Sparse graph problems are notoriously hard to accelerate on

conventional platforms due to irregular memory access patterns
resulting in underutilization of memory bandwidth. These bottle-
necks on traditional x86-based systems mean that sparse graph
problems scale very poorly, both in terms of performance and
power efficiency. A cluster of embedded SoCs (systems-on-chip)
with closely-coupled FPGA accelerators can support distributed
memory accesses with better matched low-power processing.
We first conduct preliminary experiments across a range of
COTS (commercial off-the-shelf) embedded SoCs to establish
promise for energy-efficiency acceleration of sparse problems. We
select the Xilinx Zynq SoC with FPGA accelerators to construct
a prototype 32-node Beowulf cluster. We develop specialized
MPI routines and memory DMA offload engines to support
irregular communication efficiently. In this setup, we use the
ARM processor as a data marshaller for local DMA traffic as
well as remote MPI traffic while offloading compute-intensive
portions on the FPGA. Across a representative set of benchmark
graphs, we show that embedded SoCs with FPGA accelerators
can exceed the energy efficiency of an Intel E5-2407 by as much
as 1.7× at a total graph processing capacity of 91–95 MTEPS.

I. INTRODUCTION

During the pioneering years of HPC, computer architects
exclusively built systems from specialized vector hardware;
such as the Cray-I [7] and other bespoke machines like as the
NEC SX-3 and Fujitsu Numerical Wind Tunnel. The early
90s saw x86-based systems rise in popularity due to their
low cost, simplicity and standardization of the ISA/floating-
point system (Intel 8087 was an early example of IEEE-754
compliant processor hardware). Beowulf clusters of these x86
platforms began as low cost hobbyist alternative to state-of-
art HPC systems. Based on the idea of connecting relatively
inexpensive COTS computers to collectively solve a particular
problem, the first such cluster was developed in 1994 by
connecting 16 Intel DX4 processors with 10Mbps Ethernet.
This eventually paved way for the creation of the first cluster
based supercomputer in 1997, the ASCI Red, which employed
7,246 Intel x86 Pentium Pro processors linked using a custom-
interconnect architecture. Peaking the TOP500 list for nearly
three years, it set out the foundation for the dominance of x86
cluster systems we see today.

The same era saw the introduction of Reduced Instruction
Set Architecture (RISC) based systems in place of Complex
Instruction Set Architecture (CISC) machines in the form
of PowerPC processors used in the IBM BlueGene. This
supercomputer series was launched in 2004 to exploit the

Ethernet
Cables

Netgear Switch
Power
Supply

RouterCooling
Fans

32 Zedboards

Fig. 1: Zedwulf Cluster: 32 Zynq Z7020 SoC boards

low power capabilities of RISC instead of CISC chips by
combining multiple PowerPC processors onto each chip. Thus,
the usage of multiple low power processors, typically RISC
based, in place of a single power hungry “fat” processor was
recognized as a way to improve energy efficiency. In lieu of
PowerPC hardware, ARM chips are gaining more interest in
the research community since they are fabricated extensively
in mobile devices yielding economies of scale to deliver low
power at low cost. The largest ARM-based cluster studied
was the Tibidabo cluster [6], which consisted of 192 NVIDIA
Tegra-2 SoCs, interconnected using 1GbE network. The study
concluded the lack of high-bandwidth I/O interfaces such as
10GbE/InfiniBand and the absence of hardware support for
interconnection protocols on the Tegra-2’s ARM Cortex-A9
processor as the sole limiting factors in adopting the SoC for
HPC usage. While the present day performance gap between
HPC-grade x86 processors and commercial ARM processors
can be as high as an order of magnitude, large graph problems
with low spatio-temporal locality can eliminate the perfor-
mance gap between the two architectures while retaining the
energy efficiency advantages. To investigate this claim, we pro-
totype a Beowulf cluster composed of 32 Xilinx FPGA-based
Zynq SoC boards, interconnected using a Gigabit Ethernet
Switch. We map sparse-graph oriented irregular computations
of varying dimensions to stress the memory and network
throughputs of the cluster nodes. Figure 1 shows a photograph
of our “Zedwulf” (ZedBoard+Beowulf) cluster.

In this paper, we make the following key contributions:

• Microbenchmarking of COTS SoCs: We analyze the
memory potential and network characteristics of various
embedded SoCs using micro-benchmarking tools.



TABLE I: Comparing datasheet specifications and microbenchmark performance of various COTS embedded SoC platforms

Zedboard Microzed Parallella Epiphany Intel Galileo Raspberry Pi Beaglebone Black

Technology 28nm 28nm 28nm 32nm 40nm 45nm
SoC Xilinx Xilinx Xilinx Intel Broadcom TI

Zynq 7020 Zynq 7010 Zynq 7010 Quark X1000 BCM2835 AM3359
Processor ARMv7, FPGA ARMv7, FPGA ARMv7, FPGA, i586 ARMv6 ARMv7

Epiphany III
Clock Freq. 667 MHz CPU 667 MHz CPU 667 MHz CPU 400 MHz 700 MHz 1 GHz

250 MHz FPGA 250 MHz FPGA 250 MHz FPGA
On-chip 32 KB L1 32 KB L1 32 KB L1 16 KB L1 16 KB L1 32 KB L1
Memory 512 KB L2 512 KB L2 512 KB L2 128 KB L2 256 KB L2

560 KB FPGA 560 KB FPGA 240 KB FPGA -
Off-chip 512 MB 1024 MB 1024 MB 256 MB 512 MB 512 MB
Memory 32b DDR3-1066 32b DDR3-1066 32b DDR3-1066 32b DDR3-800 32b DDR2-400 16b DDR3-606

DMIPS 1138 1138 1138 237 862 1778
Coremark 1591 1591 1782 526 1314 2457
Network (Bi-dir)3 57 MB/s 59 MB/s 32 MB/s 18 MB/s 10 MB/s 21 MB/s
L1 B/W 7.7 GB/s 7.7 GB/s 7.5 GB/s 2.8 GB/s 2.7 GB/s 7.6 GB/s
L2 B/W 1.4 GB/s 1.4 GB/s 1.4 GB/s - 1.4 GB/s 3.4 GB/s
DRAM Seq. 654 MB/s 641 MB/s 537 MB/s 270 MB/s 187 MB/s 278 MB/s
DRAM Random 32 MB/s 32 MB/s 28 MB/s 12 MB/s 10 MB/s 11 MB/s
Power 5 Watts 3.6 Watts 7.5 Watts 4 Watts 3.75 Watts 3.25 Watts

3Intel MPI Benchmark Suite result for MPI_Sendrecv for all systems in 2-node configurations

• Prototype a 32-node Zynq SoC cluster: We physically
prototype a 32-node Zynq SoC cluster using the Xilinx
Zedboard and Microzed platforms.

• Communication optimization for sparse-graph access
on the Zynq cluster: We develop customized Message
Passing Interface (MPI) routines and DMA engines opti-
mized for irregular access exhibited by graph problems

• Performance and power evaluation of the Zynq cluster
vs an x86 server node: We benchmark our cluster for
a few representative sparse graphs and compare against
the Intel E5-2407 CPU.

II. MICROBENCHMARKING COTS SOC PLATFORMS

We first evaluate a range of COTS embedded SoC-based
platforms listed in Table I to assess their feasibility for scaling
to larger-scale systems. Our characterization experiments focus
on a single chip and measure raw compute throughput, mem-
ory performance as well as MPI support for these systems.

Recent academic studies have examined the feasibility of
HPC systems based on mobile SoCs [5] for HPC-oriented
workloads and investigated the status of networking support
in these SoCs. Additionally, there are many contemporary
hobbyist clusters built from Apple TV [2], Raspberry Pi [1],
and Beagleboard xM [4] that use off-the-shelf devices for de-
livering proof-of-concept systems with high power efficiency.
These studies are insightful but it remains to be seen if
pure ARM-based SoCs have future prospects in the cluster
computing space.

Our preliminary experiments on the Intel Galileo 2 platform
indicate the Quark SoC would not be competitive at this stage

with its under-powered 400 MHz 32b CPU when compared to
ARM-based embedded SoC platforms. It reported the lowest
DMIPS score of 237 and had poor Ethernet throughput of
10 MB/s (100M Ethernet NIC). Occupying the lower-end of
the ARM spectrum, the Raspberry Pi reported a 3x higher
DMIPS/Coremark score than the Galileo. Nevertheless, its rel-
atively slower DDR2 memory limits the overall performance
gains. The Beaglebone Black further doubles the compute
performance to 1778 DMIPS. However, the 16b 400 MHz
DDR3 memory barely keeps up with its superior compute
capabilities constraining overall performance. Besides, these
devices are also limited by 100 Mb/s network links. The Zynq
SoC-based platforms (Zedboard, Microzed and Parallella)
overcome some of these shortcomings by coupling the Zynq
SoC to a 1 Gb/s network link and a respectable 32b DDR3
1066 MHz memory. The Zedboard and Microzed delivered
the highest sequential and random access memory bandwidths.
Complemented by the Gigabit Ethernet connectivity, these
platforms averaged bi-directional network throughput at a high
60 MB/s. Nonetheless, that corresponds only to a network
efficiency of 24%. This behavior is attributed to the slower
clock rate of the ARM cores (35% slower ARM CPU relative
to the Beaglebone running at 1 GHz). In addition to the
Zynq SoC, the Adapteva Parallella [3] platform also attaches
an Epiphany floating-point co-processor as a separate chip
thereby improving its compute capability substantially. We
recorded comparable DMIPS and memory bandwidth scores
on the Zedboard/Microzed, but the network throughput sat-
urated at a disappointing 32 MB/s. The high local DRAM
and remote MPI throughputs suggest that the Zedboard can

2



become a viable candidate for energy-efficient operation for
sparse irregular workloads. It is worth noting that these Zynq
platforms are development systems with extraneous supporting
logic for audio, video and configurable IOs that can be
eliminated in a pure datacenter/HPC-focussed design.

III. ZEDWULF ORGANIZATION

The Zedwulf cluster is composed of 32 Zedboards (Rev.
D) or 32 Microzed (eval. kit), interconnected using a Netgear
GS748T 48-port Gigabit Smart Switch. With a rated switching
capacity of 96 Gb/s, the switch can sustain 2 Gb/s duplex
bandwidth per 1GbE ethernet link connecting each Zedboard.
We powered the system using a Seasonic Platinum 1KW PSU,
from the PCIe EPS12 power rail with fuse protection. We
stacked the Zedboards on top each other in three columns
with 10/11 boards on each column. We provided air cooling
from 2 fans placed on either sides of the stack (4 fans total) as
shown in Figure 1. While every Zedboard has a SanDisk Ultra
32 GB SD card attached to host the OS, the master node has
an additional Samsung 840 Pro SSD attached to the USB2
port using a SATA-USB adapter. We setup the SSD as the
primary secondary storage device for our cluster to hold our
large graphs and it offers a convenient lower latency solution
for quickly loading and distributing sub-graphs. A single Zynq
node with various interface bandwidths is shown in Figure 2.
We also built a 32-node Microzed cluster by simply replacing
the Zedboard with Microzeds.

The Zynq is a heterogeneous multicore system architecture
consisting of a dual-core ARM Cortex-A9 on the Process-
ing System (PS) and a FPGA fabric on the Programmable
Logic (PL). Residing on the same chip, the PS and PL
are interconnected using AXI on-chip buses. This contrasts
to traditional FPGA implementations, whereby the latter is
connected to an x86 host using PCIe buses. This approach
allows ARM processors to benefit from low-latency links to
the FPGA which allow tightly-coupled CPU-based control of
FPGA operation.

We configured each Zedboard to run Xillinux-1.3a, an
Ubuntu-12.04 based Linux distribution with Xillybus drivers to
communicate with the FPGA using an AXI 2.4 GB/s channel.
We compiled software libraries such as MPI and other utilities
with gcc-4.6.3 with appropriate optimization flags enabled.
We use NFS (Network File System) to synchronize files
(graphs) across all 32 nodes. We setup MPI to use Myrinet
Open-MX patch to deliver a marginal improvement in network
latency. We also choose MPICH over OpenMPI as it provided
a 20–30% lower latency and higher bandwidth in our initial
stress benchmarks.

IV. COMMUNICATION OPTIMIZATION

Graph processing is a communication-dominated algorithm
that can often be organized as lightweight computations on
vertices and message-passing along edges. We map bulk-
synchronous parallel (BSP) graph computations to our cluster
by careful optimization of local communication (irregular
memory access) and remote communication (MPI access).

DRAM
512MB

SD
Card

~27 MBps
(50%)

USB2 limit

ARMv7
32b CPU

FPGA
Logic

~400 MBps 
(25%)

Zynq Z7020 SoC

~60MBps
(60%)

~650MBps sequential (25%)
~30MBps random (6%)

147μs
ping

5.1—6.4 W/card

Fig. 2: A Zynq node (Zedboard) with
peak and achieved bandwidths

A. MPI Optimization

Partitioning the graph structure to fit across multiple Pro-
cessing Elements (PEs) creates network traffic which connect
local vertices to vertices present in other PEs. Unlike local
edges, which connect vertices present within the same PE,
updating remote edges is typically an order of magnitude
slower as the data needs to be transferred from the origin
PE to the target PE using the ARM CPUs to handle network
packet transfers. Hence, there is an inherent need to reduce
the time spent in fulfilling the network operations for maxi-
mizing performance gains while using distributed systems. We
designed an optimized graph-oriented global scatter technique
using the Message Passing Interface (MPI) library.

Our approach leveraged coalesced data transfers between
PEs to take advantage of the network bandwidth, rather
than being limited by the high network latencies. We used
MPI type indexed API to encode the send and receive buffer
displacements in an MPI friendly manner. We then employed
MPI Sendrecv as the building block of our scatter routine.
The send-recv operations were scheduled in a periodic fashion
to avoid network contention across MPI nodes. This coalesced
approach of edge updates offered a speedup of 60× when
compared to performing fine-grained message transfers.

B. Memory Access Optimization

For each vertex in the graph, the graph processor needs
to fetch adjacent vertex data from local memory wherever
possible. The graph data is conventionally stored in a com-
pressed sparse format (row based or column based), which
is a memory storage optimization for sparse graph structures.
However, memory access patterns can still result in frequent
cache misses under this memory organization scheme.

While the FPGA on the Zedboard has 560KB of on-
chip memory, they can barely accommodate 100-1000s of
graph vertex and edges. Using the off-chip DRAM memory
carelessly would result in poor DRAM bandwidth utilization.
Hence, we designed a Memory Management Unit (MMU) for
Zedwulf to optimize irregular data transfers. We configure the
AXI DMA IP block to use low-level AXI descriptor chains to
encode the sparse graph access sequence. With our approach
we are able to improve random DRAM access throughput for
graph operations by as much as 3–4×.

3



0.48

0.83

0.58

0.46

0.35

0.14

0.32

0.069

0.24

more efficientmore efficientmore efficientmore efficientmore efficientmore efficientmore efficientmore efficientmore efficient
less efficientless efficientless efficientless efficientless efficientless efficientless efficientless efficientless efficient

0.00

0.25

0.50

0.75

1.00

E5−
24

07

m
icr

oz
ed

_4

ze
db

oa
rd

_4

m
icr

oz
ed

−a
rm

_4

ze
db

oa
rd

−a
rm

_4

ra
sp

be
rry

_4

be
ag

le_
4

ga
lile

o_
4

pa
ra

lle
lla

_2

E
ne

rg
y 

E
ffi

ci
en

cy
 M

et
ric

 (
M

T
E

P
S

/W
at

t)

Fig. 3: Performance-Power Tradeoffs across embedded SoCs
platforms (4-node and 2-node SoCs) and a single x86 node

(“-arm 4” versions exclude FPGA and only use ARM)

V. RESULTS

We analyze the performance and energy-efficiency of var-
ious embedded clusters for sparse graph processing. We
perform bulk-synchronous evaluation on randomly-generated
graphs with upto 32M node and edges. For the first exper-
iment, we setup 4-node clusters of each unique embedded
platform (except Parallella with 2 nodes) and compare it
against one x86 node. We scale our setup for the second
experiment where we compare the 32-node Zedboard and
32-node Microzed clusters against a single x86 node. For
compleness, our power measurements include the Ethernet
switch and PSU along with the Zynq boards.

In Figure 3, we plot processing efficiency (MTEPS/W)
across various embedded and x86 platforms. The Galileo
and Raspberry Pi clusters have the lowest performance while
demanding high power usage. The Beagle cluster doubles
the performance achieved while consuming 10% less power,
therby improving the power efficiency. The 2-node Paral-
lella cluster nearly matches the performance of the 4-node
Beaglebone but it needs more power for the extra Epiphany
co-processor. The Zedboard and Microzed boards offer the
highest energy efficiency when using the FPGA accelerators
instead of simply relying on their ARM CPUs. The Microzed
stands out with its 30% less power use over the Zedboard as
it eschews unnecessary development suport (audio, video, IO
chips) in favor of a low-cost implementation.

In Figure 4, we show the performance (in MTEPS, millions
of traversed edges per second) of the x86 node and the Zynq
clusters plotted against their measured power consumption.
We are able to marginally exceed the energy efficiency of the
x86 node (0.48 MTEPS/W vs. 0.58 MTEPS/W) when using
the Zedboard cluster. However, the lower-power and cheaper
Microzed-based cluster is able to deliver a 1.7× improvement
in energy efficiency (0.83 MTEPS/W) due to its lean design.

This measured 0.83 MTEPS/W energy efficiency figure
compares favorably to select entries in the Green Graph500

0.6 M
TEPS/W

0.6 M
TEPS/W

0.6 M
TEPS/W

0.6 M
TEPS/W

0.6 M
TEPS/W

0.6 M
TEPS/W

0.6 M
TEPS/W

0.
8 

M
TE

PS/W

0.
8 

M
TE

PS/W

0.
8 

M
TE

PS/W

0.
8 

M
TE

PS/W

0.
8 

M
TE

PS/W

0.
8 

M
TE

PS/W

0.
8 

M
TE

PS/W

● ●

0

25

50

75

100

50 100 150
Total System Power (W)

M
T

E
P

S
M

ill
. o

f t
ra

ve
rs

ed
 e

dg
es

/s
ec

on
d

●

●

E5−2407

microzed_32

microzed_16

microzed_4

zedboard_32

zedboard_16

zedboard_4

Fig. 4: Energy Efficiency of Zynq FPGA cluster against an
x86 node (4-node, 16-node and 32-node Zynq setups)

list. We look forward to implementing the Graph500 bench-
marks in the near future that builds upon this work.

VI. CONCLUSIONS

We show how to use the Zynq SoC with ARMv7 32b
CPUs supported by FPGA-accelerators to prototype energy-
efficient HPC systems for sparse graph acceleration. For a
range of graphs, we are able to deliver a performance of 91–
95 MTEPS at an energy-efficiency of 0.58 MTEPS/Watt (32-
node Zedboard), and 0.83 MTEPS/Watt (32-node Microzed)
which exceeds the x86 efficiency of 0.48 MTEPS/Watt by as
much as 1.7×. While the Zynq SoC we evaluated in this
study is promising, performance gains were limited by (1)
slow 1G Ethernet speeds of 50% peak, (2) limited DRAM ca-
pacity per node 512 MB, (3) poor CPU-FPGA link bandwidth
of 400 MB/s, and (4) extraneous devices and interfaces for
audio/video processing. Upgraded Zynq SoCs optimized for
data-center processing that address these concerns can further
improve performance and energy efficiency of these systems.

REFERENCES

[1] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, and N. S.
O’Brien. Iridis-pi: a low-cost, compact demonstration cluster. Cluster
Computing, 17(2):349–358, June 2013.

[2] K. Fürlinger, C. Klausecker, and D. Kranzlmüller. The AppleTV-cluster:
Towards energy efficient parallel computing on consumer electronic
devices. Whitepaper, Ludwig-Maximilians-Universitat, 2011.

[3] L. Gwennap. Adapteva: More Flops, Less Watts. Microprocessor Report,
pages 1–5, June 2011.

[4] E. Principi, V. Colagiacomo, S. Squartini, and F. Piazza. Low power high-
performance computingon the Beagleboard platform. In Education and
Research Conference (EDERC), 2012 5th European DSP, pages 35–39,
2012.

[5] N. Rajovic, P. M. Carpenter, I. Gelado, N. Puzovic, A. Ramirez, and
M. Valero. Supercomputing with commodity CPUs. In the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–12, New York, New York, USA, 2013. ACM Press.

[6] N. Rajovic, A. Rico, N. Puzovic, C. Adeniyi-Jones, and A. Ramirez.
Tibidabo: Making the case for an ARM-based HPC system. Future
Generation Computer Systems, 2013.

[7] R. Russell. The CRAY-1 Computer System. Commun. ACM, 21(1):63–72,
Jan. 1978.

4


