
Breaking Sequential Dependencies in FPGA-based
Sparse LU Factorization

Siddhartha
Nanyang Technological University

Singapore
siddharth@pmail.ntu.edu.org

Nachiket Kapre
Nanyang Technological University

Singapore
nachiket@ieee.org

Abstract—
Substitution, and reassociation of irregular sparse LU fac-

torization can deliver up to 31% additional speedup over an
existing state-of-the-art parallel FPGA implementation where
further parallelization was deemed virtually impossible. The
state-of-the-art implementation is already capable of delivering
3× acceleration over CPU-based sparse LU solvers. Sparse LU
factorization is a well-known computational bottleneck in many
existing scientific and engineering applications and is notoriously
hard to parallelize due to inherent sequential dependencies in
the computation graph. In this paper, we show how to break
these alleged inherent dependencies using depth-limited substi-
tution, and reassociation of the resulting computation. This is a
work-parallelism tradeoff that is well-suited for implementation
on FPGA-based token dataflow architectures. Such compute
organizations are capable of fast parallel processing of large
irregular graphs extracted from the sparse LU computation.
We manage and control the growth in additional work due to
substitution through careful selection of substitution depth. We
exploit associativity in the generated graphs to restructure long
compute chains into reduction trees.

I. INTRODUCTION

Sparse LU factorization is a commonly-used numerical
kernel in many scientific and engineering problems. It is
performance limited due to memory bottlenecks associated
with irregular access of the sparse matrix data structures. On
parallel hardware, it may be possible to distribute memory
bandwidth across multiple concurrent interfaces, but the com-
putation also consists of long sequential dependency chains
that are notoriously hard to parallelize. Several software pack-
ages (e.g. [6], [3], [1], etc) and parallel hardware designs
(e.g. [2], [5]) have been customized for computations on sparse
matrices. These solvers exploit a few limited opportunities
available for performance optimization such as (1) sparsity
reduction, (2) static analysis for data layout, and (3) spatial
processing.

In Figure 1, we show the potential for further parallelization
of dataflow implementation of a sparse LU compute graph
(bomhof2). We plot the number of nodes in the graph at
a given level (work) against latency of that node from the
input (depth). The original graph has a long tail distribution
of parallelism. Here, most of the parallelism is at the head
of the graph (depth=0) but we still have a long sequential
tail (depth≈75) that defeats parallel scaling. When we apply
a depth 8 substitution and reassociation transformation, we

Fig. 1: Impact of substitution and reassociation osdsn node
count and latency (bomhof2)

generate substantially more work (about 10-100×), but achieve
an important saving in the depth of the graph (depth≈50)
which reduces the critical latency in the computation by 1.5×.
We see later in Section 3, how to control this explosion
in amount of redundant work while still recovering useful
additional parallelism on top of the ≈3× that is already
possible [5].

The contributions in this body of work can be summarized
as follows:
• Combination of two techniques, substitution and reas-

sociation, that exposes further parallelism in sparse LU
factorization than previously thought possible (Section 3)
• Modified token-dataflow hardware design supported by

compiler that statically transforms the dataflow graph using
our novel approach (Section 3)
• Experimental framework to quantify the performance of

various graph transformations and hardware configurations

II. BACKGROUND

A. Sparse Matrix Factorization

Numerical problems in computing often require solving a
system of linear equations A~x = ~b as part of an iterative loop.
In this paper, we focus on parallelization of LU factorization
in such scenarios (e.g. circuit simulation) that permit upfront,

Sequential Complete Substitution + Reassociation Depth 2 Substitution + Reassociation

x1 b1 b1 b1

x2 b2 − L21 x1 b2 − L21 b1 b2 − L21 b1

x3 b3 − L32 x2 − L31 x1 b3 − L32 b2 + L32 L21 b1 − L31 b1 b3 − L32 x2 − L31 x1

x4
b4 − L43 x3 − L42 x2 −
L41 x1

b4 − L43 b3 + L43 L32 b2 − L43 L32 L21 b1 +
L43 L31 b1 − L42 b2 + L42 L21 b1 − L41 b1

b4 − L43 b3 + L43 L32 x2 +
L43 L31 x1 − L42 x2 − L41 x1

Operations 6 multiplies, 6 adds 17 multiplies, 11 adds 10 multiplies, 8 adds
Critical
Latency1 8 5 6

1assuming unit delay model

Fig. 2: Substitution & Reassociation transformations on the front-solve
one-off static analysis of the computation to extract and exploit
parallelism. We extend the KLU solver, [4] optimized for fast
evaluation of circuit simulation matrices, for our parallelization
study. The KLU solver performs a spatial reordering of rows
and columns in the matrix which makes it possible for the
non-zero structure in the intermediate matrices to remain static
or fixed for subsequent iterations. This feature allows us to
pre-allocate the data structures at the start of an iterative
phase and allow us to arrange the sparse matrix in memory
for faster access. More importantly, it makes it possible to
expose dataflow parallelism in the resulting unrolled compute
graph for a token dataflow FPGA implementation. The Gilbert-
Peierls (GP) algorithm [4] is the key building block of the
KLU solver. Runtime is dominated by the repeated call to
a front-solve in every iteration of the for loop over matrix
columns. In this paper, we show specifically how this front-
solve can be sped up in every iteration to achieve better
performance.

B. Token Dataflow Architecture for Sparse Matrix Solve

Sparse LU factorization on FPGAs has previously been
considered in [5], by fully unrolling the loops in the GP algo-
rithm. From this unroll, the authors construct large, irregular,
unstructured graphs corresponding to each matrix benchmark.
Non-zero entries in A are inputs to this graph, the non-zero
values of the L and U factors are the outputs, and the rest
of the nodes are multiplication, addition and division (very
few) operations. This dataflow graph is then partitioned across
a 2D network of processing elements organized as a parallel
token dataflow architecture. Each PE evaluates the nodes using
the dataflow firing rule instead of using a program counter to
sequence operations. Under the dataflow firing rule, a node
will execute asynchronously and autonomously if it receives
all its inputs. Each PE contains logic to manage the fully
pipelined arithmetic operators (multiply, add and divide) and
dataflow triggers. It also contains a local memory implemented
using BRAMs to store portions of the graph structure. The PEs
are connected using an NoC and are capable of processing a
packet per cycle at the PE-NoC interface. We use this token
dataflow architecture as a starting point for our hardware
parallelization experiments.

III. PARALLELIZATION STRATEGY

In this section, we explain the two key ideas in our parallel
design. As noted earlier, even with complete unroll of all

the for-loops in GP Algorithm, there still remain sequential
dependencies between the evaluation of different elements of
x inside the front-solve. This is the cause of the long tail
distribution observed in Figure 1. In Figure 2, we show row
solutions for a simple dense 4x4 front-solve computation. We
will use this example consistently to explain key concepts in
this section.

A. Recursive Substitution

From Figure 2, we note the equations required to resolve
elements in x have a sequential order. If we recursively substi-
tute the solutions for earlier x in the downstream expressions,
we can rewrite the expressions such that they can be resolved
independently without sequential dependencies. Unfortunately,
a complete recursive substitution for the entire computation
gives us an exponentially larger compute graph for dense
LU factorization, with mostly redundancy computations (see
growth of expressions in Figure 2). Even for sparse matri-
ces, our transformations yielded a 30–40× increase in graph
size . Hence, our challenge was to create opportunities for
asymptotic reductions while controlling growth in redundant
work. We address this challenge by doing a depth-limited
substitution instead. For the 4x4 example in Figure 2, when
substituting up to a depth of 2, we reduce the number of
nodes in the resulting dataflow graph while still exposing
opportunities for parallelism. This transformation is closely
linked to the next step, reassociation, which enables reduction
in the critical path latency.

B. Reassociation

Substitution by itself decouples the computation and re-
moves unnecessary dependencies, but it does not reduce the
critical path. If we restructure the long multiply and add chains
into dlog(N)e trees, we can obtain an asymptotic reduction
in critical input→output latency. We quantify these improve-
ments for the dense 4x4 example in Figure 2. Note that depth-
limited substitution affects the reassociation such that we
achieve smaller savings in the critical path latency. However,
this is still advantageous since we save communication latency
costs that are important when considering parallel scaling on
NoC hardware. We should note that since we use floating-
point arithmetic, a casual reassociation will not yield bit-exact
results. We evaluate the resulting error residue on the two
graphs through a C++ simulation and find very little if any
change in resulting error properties.

2

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 6000

 2 4 8 16 32 64 128
 28

 30

 32

 34

 36

 38

 40
N

o
d
e
s

C
ri
ti
c
a
l
L
a
te

n
c
y
 (

c
y
c
le

s
)

Substitution Depth

Nodes
Critical Latency

Fig. 3: Node and critical path latency trends with increasing
depth-limited substitution (bomhof2)

In Figure 3, we show the operation count and critical path
latency trends for a single front-solve iteration in bomhof2
sparse matrix benchmark when substituted to varying depths
and subsequently reassociated. By observing the trends in
Figure 3, we can postulate that a depth of 4 or 8 is suitable
for this particular iteration.

IV. METHODOLOGY

In this section, we describe our experiments to determine
the performance of our new design in comparison to the state-
of-the-art implementation of the packet-switching NoC [5].

A. Experimental Setup

We do fast prototyping and testing of different FPGA
configurations using a home-brewed cycle-accuracte simulator.
We support matrices in the Matrix Market format (.mtx),
which can then be analyzed by the KLU pre-processor to
be converted into dataflow graphs. We partition the dataflow
graphs to fit into each PE’s local memory using MLPart-5.2.14
and calibrate the switching latency based on the size of each
PE to meet the target 250MHz frequency. We also restrict the
division operation only for one PE, since there are signifi-
cantly fewer division operations required than additions and
multiplications. This allows us to fit an 8x8 PE configuration
with our new PE design, as opposed to 4x4 previously in [5].

B. Design Space Search

For each of the benchmarks to be tested, we have a very
large design space to search. We need to select a suitable
substitution depth, d, architecture configuration PE combina-
tion for parallel scaling. To keep the search space feasible, we
limit our substitution depth search by tracking the increase
in work. Likewise, we limit the possible combinations of d
to powers of 2, which generate dataflow PEs that use similar
resources as the original token dataflow design. We also only
consider square PE mesh topology configurations (e.g. 3x3,
4x4, etc). All these experiments must be repeated for every
Front-Solve step in the GP algorithm for each benchmark.
To accelerate the search of our design space, we run these
experiments in parallel across a cluster of eight Intel Xeon E5-
2609 machines. This large design space search challenge opens

up new research avenues to develop tools that could be trained
to find these optimal operating points for each benchmark.

V. EVALUATION
In this section, we investigate key factors affect the final

performance of our new design. The experimental results are
summarised in Table I and Table II. We observe the best
speedup for a single benchmark to be 31% and the mean
speedup across all benchmarks to be 20%.

 800

 850

 900

 950

 1000

 1050

 2 4 8 16 32 64 128

C
y
c
le

s
Substitution Depth

i=4053
i=4188

Fig. 4: Impact of Depth (bomhof2)
Depth. The choice of substitution depth is a significant

consideration, as increasing the substitution depth causes an
increase in the size of the dataflow graph. It must be chosen
such that the latency savings are not swamped by the cost
of processing this increased workload on the NoC. For most
benchmarks, a depth of 4 is a suitable value that consistently
delivers reasonable results. Figure 4 shows how depth of sub-
stitution affects the performance for two front-solve iterations
(4053 & 4188) in bomhof2 benchmark. Note how each of
the front-solves has its own minima at different depths. This
is part of the challenge of finding a suitable depth for the
entire benchmark and also a potential research topic on hybrid
depth selection. For now, we select a uniform substitution
depth for our each front-solve in all benchmarks. Furthermore,
not every front-Solve in each iteration of the GP algorithm
is compute-intensive. In most cases, the front-solve dataflow
graphs are small and have insignificant communication costs
(e.g. less than 8% of front-solve graphs in sandia have
> 100 edges). Transforming the smaller dataflow graphs does
not deliver savings in cycle count and in many cases, results
in a drop in performance due to the increased communication
costs (e.g. 10stages). Hence, we only carry out our graph
transformations on front-solves that are sufficiently large and
receptive to these techniques. The percentage of all front-
solves transformed with depth-limited substitution and reas-
sociation is reported under the “FST” column in Table II.

PE Configuration. For parallel scalability analysis, we vary
the number of PEs in our token dataflow design and identify
the ideal PE configuration that yields best performance. Too
few PEs mean performance is limited by computing power
while a larger number of PEs will suffer from long com-
munication delays. Figure 5 shows this effect measured on
a single Front-Solve iteration in bomhof2. Substitution and

3

TABLE I: Benchmark Graph Properties

Benchmark Rows Sp. Sub. Graph Properties

Nodes Edges Constants Adds Multiplies Operations Critical
Path

10stages 3,920 0.2% WS 341k 389k 146k 72k 123k 195k 63k

D4 340k (1.0×) 391k (1.0×) 145k (1.0×) 72k (1.0×) 124k (1.0×) 196k (1.0×) 63k (1.0×)

bomhof1 2,624 0.5% WS 1.6m 2.0m 554k 500k 518k 1.0m 24k

D4 2.1m (1.3×) 2.9m (1.5×) 673k (1.2×) 618k (1.2×) 821k (1.6×) 1.4m (1.4×) 22k (0.9×)

bomhof2 4,510 0.1% WS 2.7m 3.5m 929k 834k 908k 1.7m 53k

D4 4.1m (1.5×) 5.6m (1.6×) 1.3m (1.4×) 1.1m (1.3×) 1.7m (1.9×) 2.8m (1.6×) 53k (1.0×)

bomhof3 12,127 0.03% WS 700k 840k 280k 188k 232k 420k 50k

D4 760k (1.1×) 959k (1.1×) 280k (1.0×) 203k (1.1×) 277k (1.2×) 446k (1.1×) 48k (1.0×)

simucad 4,875 0.3% WS 5.5m 7.1m 2.0m 1.6m 1.9m 3.6m 79k

D4 11.0m (2.0×) 15.6m (2.2×) 3.2m (1.6×) 2.8m (1.8×) 5.0m (2.6×) 7.8m (2.2×) 81k (1.0×)

hamm 17,758 0.4% WS 12.0m 15.1m 4.3m 3.4m 4.2m 7.6m 283k

D4 14.8m (1.2×) 19.4m (1.3×) 5.1m (1.2×) 3.9m (1.2×) 5.8m (1.4×) 9.6m (1.3×) 309k (1.1×)

sandia 25,187 0.03% WS 989k 961k 508k 166k 315k 481k 111k

D4 981k (1.0×) 999k (1.0×) 482k (0.9×) 169k (1.0×) 330k (1.0×) 500k (1.0×) 110k (1.0×)

Sp. = Sparsity, Sub. = Substitution, WS = Without Substitution, D4 = Depth 4

TABLE II: Benchmark Performance Cycles

Benchmark Sub. Configuration

FST PE Cycles Speedup

10stages WS - 1x1 971k -

D4 5% 2x2 966k 1.01×
bomhof1 WS - 4x4 1.4m -

D4 25% 8x8 1.1m 1.21×
bomhof2 WS - 4x4 2.0m -

D4 84% 8x8 1.6m 1.20×
bomhof3 WS - 2x2 1.2m -

D4 20% 8x8 948k 1.21x

simucad WS - 4x4 5.2m -

D4 84% 8x8 3.6m 1.31×
hamm WS - 3x3 12.1m -

D4 95% 8x8 8.8m 1.27×
sandia WS - 1x1 2.0m -

D4 10% 8x8 1.7m 1.18×
WS = Without Substitution, Sub. = Substitution, D4 = Depth 4
FST = percentage of front-solves transformed

reassociation allows us to continue scaling up to 36 PEs from
the 16 PEs that was previously possible while achieving a 26%
improvement in performance.

VI. CONCLUSIONS

We show how to parallelize sparse LU factorization using
FPGAs beyond what was previously thought possible. The
underlying idea of “recursive substitution and reassociation”,
at first glance, appears infeasible due to the increased cost
of managing redundant work. To handle this challenge, we
combined two techniques, depth-limited substitution and re-
association, to break the inherent sequential dependencies in

1711

2316

10
3

10
4

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

C
y
c
le

s

Processing Elements (PEs)

Crossover ≈ 10 PEs

3616

No Substitution
With Substitution

Fig. 5: Impact of PE scaling (bomhof2)

the computation. Across a range of benchmarks, we show
a speedup of 1.01–1.31× when compared to the state-of-
the-art FPGA design that already delivers 3× speedup over
conventional CPU hardware.

REFERENCES

[1] P. Amestoy, I. Duff, and J.-Y. L’Excellent. Multifrontal parallel distributed
symmetric and unsymmetric solvers. Comput. Methods in Appl. Mech.
Eng., 2000.

[2] X. Chen, Y. Wang, and H. Yang. NICSLU: An adaptive sparse matrix
solver for parallel circuit simulation. Computer-Aided Design of Inte-
grated Circuits and Systems, IEEE Transactions on, 32(2):261–274, 2013.

[3] T. A. Davis. Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern
multifrontal method. ACM Transactions On Mathematical Software,
30(2):196–199, June 2004.

[4] T. A. Davis and E. Palamadai Natarajan. Algorithm 907: KLU, A Direct
Sparse Solver for circuit simulation problems. ACM Trans. Math. Softw.,
37(3):36:1–36:17, Sept. 2010.

[5] N. Kapre and A. DeHon. Parallelizing sparse Matrix Solve for SPICE
circuit simulation using FPGAs. In Field-Programmable Technology,
2010.

[6] X. S. Li. An overview of SuperLU: Algorithms, implementation, and user
interface. ACM Transactions On Mathematical Software, 31(3):302–325,
September 2005.

4

