
Real-time Automatic Modulation Classification
Stephen Tridgell, David Boland, Philip H.W. Leong and Siddhartha

The University of Sydney
Email: {stephen.tridgell, david.boland, philip.leong, siddhartha.siddhartha}@sydney.edu.au

Abstract—Deep learning based techniques have shown promis-
ing results over traditional hand-crafted methods for automatic
modulation classification for radio signals. However, implemen-
tation of these deep learning models on specialized hardware
can be challenging, as both latency and throughput performance
are critical to achieving real-time response to over-the-air radio
signals. In this work, we meet our targets by designing an
optimized ternarized convolutional neural network that leverages
on the RF capabilities offered by the Xilinx ZCU111 RFSoC
platform. The implemented networks achieve high-speed real-
time performance with a classification latency of ≈8µs, and an
operational throughput of 488k classifications per second. On
the challenging open-source RadioML dataset, we achieve up to
81.1% accuracy, which is competitive to existing state-of-the-art
software-only implementations.

I. INTRODUCTION

Deep neural networks in recent years have surpassed state-
of-the-art performance in a variety of fields such as computer
vision, speech recognition, and machine translation [10]. Con-
volutional neural networks (CNNs), in particular, have done
very well for pattern recognition problems. There is also grow-
ing interest in CNNs for radio frequency (RF) applications,
particularly in automatic modulation classification (AMC) [5],
[9], [14]. In AMC, the goal is to accurately identify the
modulation type used by a transmitting source based on RF
samples taken from the environment. Deep neural networks
have been shown to outperform the state-of-the-art in this
domain, especially when there is a low signal-to-noise (SNR)
ratio in the transmission channel [5], [14].

While research into deep learning methods for AMC has
gained significant traction, there are far fewer efforts un-
dertaken on realizing these machine-learning based systems
as real-time hardware implementations. CNNs are typically
compute-bound, and while domain-specific accelerators can
offer markedly better performance over commodity general-
purpose hardware, they are usually targeted towards computer
vision applications where a classification throughput of tens to
hundreds of classifications per second is sufficient. Figure 1
shows this effect on a modern NVIDIA RTX 2080 Ti GPU,
which tops out at a peak throughput of ≈ 30k classifications
per second on the smaller models. In addition, a large batch-
size plays a vital role in sustaining this throughput, which
may not be feasible for a real-time implementation due to
latency constraints. For RF applications, the data-rate can be
very high on the order of 100s of millions of samples per
second, and hence, both latency and throughput of the AMC
design are critical for sensing and responding to changes in
the RF channel.

●

●

●●● ●

● ●

ResNet33

ResNet33

TW−64

TW−64

TW−64

VGG10

VGG10

TW−96

TW−96

TW−96

0.1

1

10

100

488

75 80 85 90 95 100
Test Accuracy (%)

P
ea

k
cl

as
si

fic
at

io
ns

/s
ec

(x
1e

3)

Batch size
●

●

1

256
Platform

● NVIDIA RTX 2080 Ti

Xilinx ZCU111

Figure 1: Peak classification throughput vs model accuracy
on 24 modulation classes, measured on two modern hardware
platforms. Note that increasing batch size also increases the
response latency of the model.

The Xilinx ZCU111 RFSoC (Radio-Frequency System-
on-Chip) is a new FPGA-based radio platform targeted for
research and development on software-defined radio (SDR) ap-
plications. The platform is built on the Zynq Ultrascale+ SoC
family, and offers runtime-programmable multi-gigasample RF
transceivers for building high-speed radio systems. As seen
from Figure 1, we are able to improve the classification
throughput by several orders of magnitude on the RFSoC
platform (batch size 1), while achieving competitive classi-
fication accuracy on a large number of modulation classes.
The contributions in this work are as follows:
• A fully-pipelined ternary-weights convolution neural net-

work implementation that is capable of producing high-
speed real-time classifications on the signal modulation
classification problem.

• An exploration on the effect of hardware design pa-
rameters on model accuracy, alongside an emphasis on
performance/resource efficiency.

• The first real-time implementation of a high-speed ma-
chine learning model on a radio frequency application
that takes advantage of the Xilinx ZCU111 SoC.

II. BACKGROUND

A. Automatic Modulation Classification

Automatic Modulation Classification is a common require-
ment in cognitive radio networks (CRN) for both military and
civilian applications. For example, AMC plays a pivotal role
in dynamic spectrum management in CRNs, where cognitive

radios are able to detect idle frequency bands and transmit data
in these bands such that the primary users of these channels are
not affected [8]. AMC, however, can be a challenging task for
two reasons: (1) often, there is no apriori information known
about the transmission signal/channel (e.g. signal-to-noise
ratio, carrier frequency, etc), especially in military contexts,
and (2) latency/throughput requirements to achieve real-time
processing often limit the complexity of the implementation
and its runtime effectiveness.

The classical approach to AMC is built on statistical/s-
tochastic methods that require high domain expertise and
frequent manual tuning to achieve reliable performance in
each specific environment [1], [6], [8]. Recently, notable
efforts have been made into using deep learning techniques to
push this field further [5], [9], [14]. While these studies have
demonstrated an improvement to classification accuracy and
reliability, the practicality of the realizing a real-time machine-
learning based AMC implementation is left unexplored. Our
work adopts a more holistic approach, where expertise in both
machine-learning and hardware design is used in tandem to set
a benchmark for real-time automatic modulation classification.

B. Deep Neural Networks on FPGAs

Convolutional neural networks (CNNs) are deep neural
networks that comprise of convolution, pooling, and dense
layers. CNNs come in a variety of flavors, and can be highly
customized to suit each application domain. Readers are
recommended to refer to [10] for a comprehensive overview
of modern CNN design.

While CNNs are typically trained with single/double
floating-point precision, inference can be done with reduced
precision and/or pruning without a significant loss in accu-
racy, which opens up opportunities for building accelerators
for deployment. FPGAs have become a popular platform to
implement these quantized CNNs in recent years as demon-
strated in [12]. In addition, ternarization of weights [2], [3]
is a popular quantization choice, as it delivers a significant
reduction in the memory footprint of the CNN model, while
also preserving the model accuracy to a large degree. In ternary
weights networks (TWNs), parameters are quantized during
training as follows:

W l
i =

+1, if W l

i > ∆

0, if
∣∣W l

i

∣∣ ≤ ∆

−1, if W l
i < −∆

(1)

where W l
i are the parameters in each layer of the network,

and ∆ is a positive threshold parameter used for quantization.

C. RadioML Dataset

We train and evaluate all our network designs on the open-
source RadioML 2018.01A dataset1, which is a collection of
raw I/Q samples that have been captured over-the-air using
USRP devices as described in [5]. Each training sample is
a time-series of 1024 I/Q sample pairs, accommpanied by a

1https://www.deepsig.io/datasets, Accessed: July 2019

label that identifies its modulation class. There are a total of 24
modulation classes recorded at 26 signal-to-noise ratio (SNR)
levels, ranging from -20dB to +30dB in increments of 2dB.
Each {modulation class,SNR} pair has 4096 training examples,
and hence, there are a total of 2.56M labeled I/Q time-series
examples in the entire dataset. The 24 modulation classes
include a broad range modulation types, details of which can
be found in [5].

D. Related Work

Deep learning for RF applications is a relatively new field,
and in particular, existing work on AMC has been restricted
to model design and evaluation purely in software. Mendis
et. al [4] compute the spectral correlation function (i.e. a
cyclo-stationary feature extraction step) and implement a deep-
belief network for classifying five modulation classes. In [7],
the authors report the effectiveness of various deep neural
networks on ten modulation classes, and demonstrate several
strategies that help reduce training time. Zhang et. al [13]
propose a heterogeneous CNN / LSTM (long short-term
memory) model that delivers high classification accuracy on
eleven modulation classes. While inference runtime is reported
for CNN networks (on the order of a few seconds), the authors
do not report runtime of the proposed heterogeneous models,
which is likely to be larger due to the increased complexity in
the models. O’Shea et al. [5] design and evaluate two CNN
models (VGG10 and ResNet33) and demonstrate competitive
accuracy performance on 24 modulation classes. In all of these
studies, runtime boundries for real-time implementation are
not reported, or are incomplete, which is a research gap that
we aim to fill with this work.

III. CNN-BASED AUTOMATIC MODULATION
CLASSIFICATION

We use the models proposed in [5] – VGG10 and ResNet33
– as our baseline, and explore design strategies to achieve a
high-speed and resource-efficient FPGA implementation. Un-
fortunately, implementing a high-throughput ResNet33 model
on an FPGA is infeasible due to two reasons: (1) the model
size is too large to be spatially mapped to the FPGA fabric,
which limits the achievable classification throughput signifi-
cantly, and (2) the residual connections create an unbalanced
design which can result in bottlenecks if large amounts of
on-chip memory are not available to store intermediate acti-
vations. Hence, we elected to use the smaller VGG10 model
instead for our real-time FPGA-based AMC implementation.
We experiment with low precision variations of the VGG10
network and explore the tradeoff of computation with accu-
racy.

The VGG10 model has seven 1D convolutional layers
followed by three dense layers. All of the convolutional
layers have a kernel size of three and a stride of one. The
convolutions are followed by maxpool, batch normalization
and the ReLU activation layers. In [5], the first two dense
layers use alpha dropout followed by the SELU activation
function. We use this training method for networks trained

https://www.deepsig.io/datasets

a b c d e f g h i

Reg(c-a) Reg(e+f)Reg(c+d) Reg(h)

Reg(c-a) Reg(e+f-h)Reg(c+d-e-f)

z0z1

Figure 2: Computing z0 = c + e + f − (a + h) and z1 =
c+ d− e− f

with floating-point precision, but swap alpha dropout layers
with batch normalization layers when training low-precision
networks for improved training stability.

A. Training Method

All models are trained on the RadioML 2018.01A dataset.
We set the batch size to 128, the initial learning rate to
10−3, and train for 250k steps. The learning rate was set
to smoothly decay exponentially at a rate of 0.5 every 100k
steps. The dataset was partitioned into a 90% – 10% split
to create the train and test sets respectively, such that each
{SNR, modulation class} pair had 3686 train and 410 test
examples. For training, we use samples captured at ≥ +6dB
SNR, which is typically the minimum signal strength observed
in most wireless communication systems. This improves the
training time, and ensures that the CNN is able to achieve the
best classification accuracy for typical real-time use cases. In
addition, we also use the teacher-student [2] training method-
ology to further improve accuracy. In this case, for all VGG10
networks, including floating-point implementations, a trained
ResNet33 model was used as the teacher.

Ternary weight networks were quantized using the method
described in [3], which results in a network with ternary
weights and floating-point activations. The authors in [3]
choose a threshold using a value of ∆ = ν · E(|W |), where
they recommend ν = 0.7. As discussed in [11], ν can be
used to control the sparsity of the weights, and hence, it has
a direct impact on the implementation of the network. For
networks with quantized activations we first clip the floating-
point activation values between 0 and 1, and then compute

x′ = round(x ∗ (2k − 1))/(2k − 1)

where x is an activation, and k is the number of bits to use
for the quantization. This activation quantization is done after
the ReLU of each layer.

B. Model Design

We leverage model design techniques described in our
previous work [11] to implement and evaluate low precision
CNNs. Figure 2 shows an example of how a convolution can
be visualized as a dataflow graph for evaluating two output
map pixels, z0 and z1, in a convolution window. This window
can then be fed inputs in a pipelined fashion by doing an

im2col transformation on the input image. The dataflow graph
is implemented spatially on the FPGA as hardware blocks in
order to maximize available parallelism on the FPGA fabric.
We also further optimize the hardware implementation for
each specific network by merging common subexpressions
to reduce the area required. This method of implementing a
ternary neural network in hardware allows for a very compact
and high throughput design. See our previous work in [11]
for more details.

We explore different model sizes, and our goal is to max-
imize classification accuracy as much as possible while fully
utilizing the available FPGA resources. Table I details all the
models and their properties explored in this paper. The first
four networks in Table I are trained and tested with floating-
point weights and activations. All the networks with the prefix
TW- are trained with ternary weights (i.e. {-1, 0, 1}). For all
TW- networks, we use ν = 0.7 for the first layer, ν = 1.2 for
the remaining convolutional layers, and ν = 0.7 for the two
dense layers with ternary weights. All networks have floating-
point batch normalization variables. Neither the weights and
activations of the final dense layer, nor the input data in all
networks is ever trained with quantization.

C. Quantization error

The networks trained in Table I use 32b floating-point for
the batch normalization variables and the final dense layer.
During inference, the batch normalization variables can be
multiplied into the scaling factors of the convolution operation
to give an equation bn(x) = ax+ b, where a and b are known
constants that are pre-loaded into the hardware design. In order
to avoid implementing floating-point blocks for portions of
the computation, calculations are done in fixed-point instead.
We empirically determine that these models deliver the best
accuracy when 6 fractional bits in the activation layers, and
8 fractional bits for the batch normalization variables are
used. We observe minimal numerical difference at the output,
typically around 2% for the classes with the largest output
activation values. Table I shows that this quantization strategy
provides enough bits for stable implementations with minimal
differences in accuracy.

IV. METHODOLOGY

We use Vivado 2018.3 to synthesize all designs. For train-
ing, we use the Tensorflow framework to train and test various
models, and we quantize weights in the networks to 2b ternary
representations. In order to support our claim for real-time
modulation classification, we choose an I/Q sample rate of
500MHz and design the CNN to accept 2×I/Q samples each
cycle with a 250MHz clock.

V. RESULTS

A. Resource Utilization

Table II shows the resource utilization for the various
models compared in this paper. The DSP usage is relatively
constant as the convolutions do not use any DSPs. For both
dense layers with 512 outputs, this is 1024 multiplications,

Table I: Properties of various models designed and explored in this paper.

Model Name Architecture Precision1

(Weights/Activations) # parameters # MACs Accuracy2 (FxP3)

ResNet33 [5] {ResBlock}×6, (FC, 128)×2, (FC/Soft-
max, 24) 32b/32b (FP) 507k (2.03Mb) 111m 95.5

VGG10 [5] {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 128)×2, (FC/Softmax, 24) 32b/32b (FP) 102k (407Kb) 12.8m 88.0

VGG10-64 {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 32b/32b (FP) 381k (1.5Mb) 13.3m 89.6

VGG10-128 {(Conv, K3, 128), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 32b/32b (FP) 636k (2.5Mb) 51.1m 90.9

TW-64 {(Conv, K3, 64), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/32b (FP) 381k (95kb) 13.3m 78.8 (78.7)

TW-96 {(Conv, K3, 96), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/32b (FP) 490k (123kb) 29.1m 82.4 (81.1)

TW-128 {(Conv, K3, 128), (MaxPool, S2)}×7,
(FC, 512)×2, (FC/Softmax, 24) 2b/32b (FP) 636k (159kb) 51.1m 82.1 (81.7)

1FP = 32b floating-point; 2Best accuracy at +30dB SNR; 3 with fixed point activations

Table II: Out-of-context resource utilization. Target device:
xczu28dr-ffvg1517-2-e at 250MHz. 1 Failed to Route

Model CLBs LUTs FFs BRAMs DSPs

TW-64 28k
(53.5%)

124k
(29.1%)

217k
(25.5%)

524
(48.5%)

1496
(35%)

TW-96 47k
(89.3%)

232k
(54.7%)

369k
(43.4%)

524
(48.5%)

1207
(28.3%)

TW-1281 51k
(96.7%)

320k
(75.3%)

506k
(59.5%)

524
(48.5%)

1431
(33.5%)

whereas for 128 outputs only 256 multiplications need to be
performed. It should be noted that this is typically multiplying
a 16-bit number with a 2-bit weight, hence mapping it to a DSP
is optional for Vivado as this could be computed with CLBs.
The largest network, TW-128, fails to complete routing. All
other designs meet timing constraints with a 250 MHz clock.

VI. CONCLUSION

In this paper, we demonstrate real-time automatic mod-
ulation classification with CNNs on an FPGA. We explore
the effect of hardware design parameters on model accuracy
and on the performance/resource efficiency. This paper also
presents the first real-time implementation, to the best of our
knowledge, of a high-speed machine learning model on a
radio frequency application that takes advantage of the Xilinx
ZCU111 SoC. Our design achieves a very high throughput of
488K classifications/s and a classification latency of just 8µs,
while delivering a competitive 81.1% accuracy on the 24-class
RadioML dataset.

REFERENCES

[1] Ameen Abdelmutalab, Khaled Assaleh, and Mohamed El-Tarhuni. Au-
tomatic Modulation Classification Based on High Order Cumulants
and Hierarchical Polynomial Classifiers. Phys. Commun., 21(C):10–18,
December 2016.

[2] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric
Pétrot. Ternary Neural Networks for Resource-Efficient AI Applications.
In 2017 International Joint Conference on Neural Networks (IJCNN),
pages 2547–2554. IEEE, 2017.

[3] Fengfu Li, Bo Zhang, and Bin Liu. Ternary Weight Networks. arXiv
preprint arXiv:1605.04711, 2016.

[4] Gihan J Mendis, Jin Wei, and Arjuna Madanayake. Deep Learning-
based Automated Modulation Classification for Cognitive Radio. In
2016 IEEE International Conf. on Communication Systems, pages 1–6.
IEEE, 2016.

[5] T. J. O’Shea, T. Roy, and T. C. Clancy. Over-the-Air Deep Learning
Based Radio Signal Classification. IEEE Journal of Selected Topics in
Signal Processing, 12(1):168–179, Feb 2018.

[6] Prokopios Panagiotou, Achilleas Anastasopoulos, and A Polydoros.
Likelihood Ratio Tests for Modulation Classification. In MILCOM
2000 Proceedings. 21st Century Military Communications. Architectures
and Technologies for Information Superiority (Cat. No. 00CH37155),
volume 2, pages 670–674. IEEE, 2000.

[7] Sharan Ramjee, Shengtai Ju, Diyu Yang, Xiaoyu Liu, Aly El Gamal,
and Yonina C Eldar. Fast Deep Learning for Automatic Modulation
Classification. arXiv preprint arXiv:1901.05850, 2019.

[8] B. Ramkumar. Automatic Modulation Classification for Cognitive
Radios using Cyclic Feature Detection. IEEE Circuits and Systems
Magazine, 9(2):27–45, Second 2009.

[9] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury. Deep Learning
Convolutional Neural Networks for Radio Identification. IEEE Commu-
nications Magazine, 56(9):146–152, Sep. 2018.

[10] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient
Processing of Deep Neural Networks: A Tutorial and Survey. Proceed-
ings of the IEEE, 105(12):2295–2329, 2017.

[11] Stephen Tridgell, Martin Kumm, Martin Hardieck, David Boland, Dun-
can Moss, Peter Zipf, and Philip H.W. Leong. Unrolling Ternary
Neural Networks. ACM Transactions on Reconfigurable Technology and
Systems, 12(4), 2019.

[12] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella, Michaela
Blott, Philip Leong, Magnus Jahre, and Kees Vissers. FINN: A
Framework for Fast, Scalable Binarized Neural Network Inference.
In Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 65–74. ACM, 2017.

[13] Duona Zhang, Wenrui Ding, Baochang Zhang, Chunyu Xie, Hongguang
Li, Chunhui Liu, and Jungong Han. Automatic Modulation Classification
Based on Deep Learning for Unmanned Aerial Vehicles. Sensors,
18(3):924, 2018.

[14] Siyang Zhou, Zhendong Yin, Zhilu Wu, Yunfei Chen, Nan Zhao, and
Zhutian Yang. A Robust Modulation Classification Method using
Convolutional Neural Networks. EURASIP Journal on Advances in
Signal Processing, 2019(1):21, Mar 2019.

